Y ProcRef

XProc 3.1 Step Reference

Erik Siegel - Xatapult
2025-04-15

XProc 3.1 Step Reference 1

0

Table of Contents

1 INEOAUCHON ...t 3

2 SEEPS it ettt 4
2.1 OVEIVIEW ottt 4
2.2 p:add-attribute et 6
2.3 pradd-xml-base ettt 8
2.4 prarchive ..o 11
2.5 prarchive-manifest18
2.6 p:cast-content-type ... SRR 22
2.7 PICOMPALE .ottt bbb bbb 29
2.8 PICOMIPIESS euiviiuieiiiiiiiiicii ittt bbb bbb 31
2.9 PICOUNL ettt bbb bbb bbb bbb 32
210 PrESS-LOIMIALLET ...uuiiuirieieiciieeieireie ettt naenais 34
20T PUACLELE et et 36
212 PrAIFECLOTY-LISE wecvuiriuiuiiiiieici ettt 37
213 PIEIICOMAE ettt et 45
214 PIELTOL ittt bbbt 47
215 PHILE-COPY ettt 49
216 prfile-Create-temMPIIle ..ot 51
207 PHALE-AEIELE ..ottt 54
218 PHALE-INFO e 56
2.19 piile-mkdir59
2.20 p:file-move60
2.21 pile-touch02
2.22 pilter03
2.23 PHRASH e 65
2.24 PIREEP-TEQUESE weueuirieeieiiiieceacitee ettt et 68
225 PUACTILLY ooeeiuiiieiciiieie ittt 78
2.20 PUISEIT ettt 80
2.27 PrRVISIDIEXIMIL .ottt 83
2.28 PUSONOIL ettt bbb 86
2.29 PUSOMAMIELZE .ouvuiiiiiiiiiiiiici ittt 89
2.30 PrADEL-CIEMENLScouiiiiieiiiciciciecicitie it 92
231 PHOAA e 94
2.32 PrmMAKe-ADSOIULEULLSouuvuiiiiiiiiiicicici ettt 97
2.33 pmarkdOWn-tO-NML ... 99
2.34 PUMIESSAZE oovuieiiiiiiicitiie bbbt 100
2.35 PrAMESPACE-AECLELE w.couvrieiiuiriiiciiieiec ittt 101
2.30 PNAMESPACE-TENAIMIE ...vuiuveirietisiatiiseetsiseseeises e s sasss s sise bbb ss bbb bbb bbb ssseb s 103
2.37 pros-exec ... ST s 106
2.38 pros-info e 110
2.39 prpack et 111
2.40 prrename ... RO TR 113
241 PUEPIACE .ot bbb 115
242 PIUN it 116
243 PrSENA-MALL .ot 121
244 PISEL-ALLIDULES ...couiuiieiuiiiecicteie ettt 124
2,45 PISEL-PLOPEITIES .ouiuiriuiiiiiiiiiiiciici it 126
240 PISIIK oot 127
24T PISLEEP et bbb 127
2.48 PISPLE-SEQUENCE ...cucviiiiiiiiiiiiiiicic e 128
2049 PISEOLE oot 132
2.50 PrSING-TEPIACE .ouiuiiirieiiiiiiiiici s 134
2.51 PUEXE-COUNL vttt bbb bbb
2.52 PrEXE-NEA oot e
2.53 prtext-join
2.54 p:text-replace

XProc 3.1 Step Reference 2

2.55 PUEXE-SOIT ottt 143
2.50 PUEXE-TAIL ..ottt 146
2.57 PrUNALCRIVE oottt e 147
2.58 PIUNCOMPIESS .ouviiiiniiiiiiiiiiici s 152
2.50 PIUNWIAD ot 154
2.60 pruuid .o SRR 156
2.61 prvalidate-with-dtdcccccoeeeneee e 158
2.62 prvalidate-with-JSON-SCHEMAc.ccuiiiiiiiiciic e 160
2.63 prvalidate-with-nvdl e 164
2.64 prvalidate-with-relax-ng s 167
2.65 prvalidate-with-SCheMALION ... 171
2.66 prvalidate-with-XmI-SChEMA ..o 177
2,07 PIWIAD oiieiiriieiiici st bbb 185
2.08 PIWLAP-SEQUEIICE .euviuiuuiiniiisistiisesiscs st bbbt bbb bbb 188
2.609 prwwWW-fOrm-UtldECOdE ..o 190
2.70 prwWW-fOrm-ULIENCOAEcuuiuiiiieiiiiecii e 192
271 PIXINCIIAC .o 194
272 PIXQUETY ottt 197
2.73 PIXSILOIMALET ..oueiiiiiiiiicit e 200
274 PIXSIE o e 201
3 CALEQOLIES ...t 208
3.1 OVEIVIEW vttt e 208
3.2 Standard XPIOC SEPS ...cciuiiriiiiiiiiiiisiciisi e 209
3.3 XProc dynamic pipeline eXECUtION STEPS ...cccuiuieriiiiiiiciiiiiiesiisissei s es 211
3.4 XProc email TeIated STEPS ...coviiiiiiiiiiiiiiciii s 211
3.5 XProc file and directory related STEPS ..o s 211
3.6 XProc Invisible XML related steps s 211
3.7 XProc operating system related steps .. s 211
3.8 XProc paged media related steps R 211
3.9 XProc text related SEEPS ..ot 212
3.10 XProc validation related STEPS ..o s 212
311 Additional StANdALdS ... 212
312 Archive handling ... s 213
3.13 Base URI elated ... s 213
3.14 Basic XML ManiPulation ..o 213
315 COMPIESSION vuiiiiiiiiriisiiiici bbb 214
3.16 Interaction with the enVIFONMENL ...t 214
3.17 JSON LElated STEPS .oucvureiuiiiiiiiiiiiiiiiiiiisiii bbb 215
318 MISCEIANEOUS ...ecviiiiieiiiiiiiei e bbb 215
3.19 Namespace handling ... 216
3.20 Text document related STEPS ... 216
A ELLOL COAES ..ottt 217

B NamMeESPACES USEA ..ottt ettt 222

XProc 3.1 Step Reference 3

1 Introduction

XProc is a programming language for processing XML, JSON, and other documents in pipelines. XProc
chains conversions and other steps, allowing for potentially complex processing, XProc is especially useful for
applications, such as publishing, where content may come from multiple input sources, pass through multiple
processing steps and result in multiple output streams. More information, including lots of learning materials,
can be found at https://xproc.org.

The basic building blocks of XProc are its szeps. A step is something that processes the document(s) flowing
through it in some way. For instance by changing some attributes, deleting stuff, or using it for accessing
resources by HT'TP. XProc has many built-in steps and you need to know, in detail, what they do to be able to
write an XProc program. This book is a reference guide to all defined XProc steps.

In 2020 I published a book called “XProc 3.0 - Programmer Reference” (https://xmlpress.net/publications/
xproc-3-0/):

m Mgl recorrasded”
Pharran TV, dumioper of XML Calbuk

XProc 3.0

Programmer
Reference

Erik Siegel

Appendices A and B in the book describe all the steps. However, due to time constraints, the step
descriptions were copied from the formal XProc specification. This leaves much to be desired for users of
the language: the specification is aimed at XProc processor wuplementers, not at language users. To correct this,
I created the website xprocref.org (https://xprocref.org), containing reference information about all the
XProc steps, written from a more uset-otiented perspective.

Also, since the book was written, the specification was updated to version 3.1. And although the changes are
relative minor, details count! Both the xprocref.org (https://xprocref.org) website and this book are up-to-
date with version 3.1.

Erik Siegel (erik@xatapult.nl)
Xatapult Content Engineering (https://www.xatapult.com)
2025-04-15

XATAPULT

CONTENT ENGINEERING

https://xproc.org
https://xmlpress.net/publications/xproc-3-0/
https://xmlpress.net/publications/xproc-3-0/
https://xprocref.org
https://xprocref.org
https://www.xatapult.com

XProc 3.1 Step Reference

2 Steps

2.1 Overview

Steps for XProc version 3.1. You can also view these steps by category (pg. 208).

A

* p:add-attribute (pg 6) - Add (or replace) an attribute on a set of elements.

* p:radd-xml-base (pg. 8) - Add explicit xml:base attributes to a document.

* p:archive (pg. 11) - Perform operations on archive files.

* p:archive-manifest (pg 18) - Create an XML manifest document describing the contents of an
archive file.

C

* p:cast-content-type (pg 22) - Changes the media type of a document.

* p:compare (pg. 29) - Compares documents for equality.

* p:compress (pg 31) - Compresses a document.

* p:count (pg 32) - Count the number of documents.

* p:css-formatter (pg 34) - Renders a document using CSS formating,

D

* p:delete (pg 30) - Delete nodes in documents.
* p:directory-list (pg 37) - List the contents of a directory.

* p:encode (pg 45) - Encodes a document.
* p:error (pg 47) - Raises an error.

:file-copy (pg 49) - Copies a file or directory.
:file-create-tempfile (pg. 51) - Creates a temporary file.
:file-delete (pg 54) - Deletes a file or directory.

:file-info (pg. 50) - Returns information about a file or directory.
:file-mkdir (pg 59) - Creates a directory.

:file-move (pg. 60) - Moves or renames a file or directory.
:file-touch (pg 62) - Changes the modification timestamp of a file.

.
T T T T T T T T

:filter (pg 63) - Selects parts of a document.

thash (pg. 65) - Computes a hash code for a value.

.
©

thttp-request (pg. 68) - Interact using HT'TP (or related protocols).

.
©

ridentity (pg. 78) - Copies the source to the result without modifications.

. .
T T

rinsert (pg 80) - Inserts one document into another.

* p:invisible-xml (pg. 83) - Performs invisible XML processing.

XProc 3.1 Step Reference

J
P
P
L
P
* P
M

* P
* P
* P
N

(o)

P
P
R

S
P
P
P
P
P
P
P
P
T

T T T T T T

:json-join (pg. 86) - Joins documents into a JSON array document.
:json-merge (pg. 89) - Joins documents into a JSON map document.

:label-elements (pg. 92) - Labels elements by adding an attribute.
:load (pg 94) - Loads a document.

:make-absolute-uris (pg 97) - Make URIs in the document absolute.
:markdown-to-html (pg. 99) - Converts a Markdown document into HTML.

:message (pg. 100) - Produces a message.

p:namespace-delete (pg. 101) - Deletes namespaces from a document.
p:namespace-rename (pg. 103) - Renames a namespace to a new URL

p:os-exec (pg 106) - Runs an external command.

p:os-info (pg 110) - Returns information about the operating system.

:pack (pg 111) - Merges two document sequences, pair-wise.

p:rename (pg. 113) - Renames nodes in a document.
p:replace (pg 115) - Replace nodes with a document.
p:run (pg 116) - Runs a dynamically loaded pipeline.

:send-mail (pg. 121) - Sends an email message.

:set-attributes (pg 124) - Add (or replace) attributes on a set of elements.
:set-properties (pg. 126) - Sets or changes document-properties.

:sink (pg 127) - Discards all source documents.

:sleep (pg. 127) - Delays the execution of the pipeline.

:split-sequence (pg 128) - Splits a sequence of documents.

:store (pg. 132) - Stores a document.

:string-replace (pg 134) - Replaces nodes with strings.

rtext-count (pg 138) - Counts the number of lines in a text document.
:text-head (pg 139) - Returns lines from the beginning of a text document.
ttext-join (pg 140) - Concatenates text documents.

:text-replace (pg 142) - Replace substrings in a text document.
:text-sort (pg 143) - Sorts lines in a text document.

rtext-tail (pg 140) - Returns lines from the end of a text document.

XProc 3.1 Step Reference

:unarchive (pg. 147) - Extracts documents from an archive file.
:uncompress (pg. 152) - Uncompresses a document.

sunwrap (pg. 154) - Unwraps elements in a document.

ruuid (pg 156) - Injects UUIDs into a document.

o
T T T T

:validate-with-dtd (pg 158) - Validates a document using a DTD.
:validate-with-json-schema (pg 160) - Validates a JSON document using JSON schema.
:validate-with-nvdl (pg 164) - Validate a document using NVDL.
:validate-with-relax-ng (pg 167) - Validate a document using RELAX NG.
:validate-with-schematron (pg. 171) - Validates a document using Schematron.

T T T T T T

:validate-with-xml-schema (pg 177) - Validates a document using XML Schema.

:wrap (pg 185) - Wraps nodes in a parent element.
:wrap-sequence (pg. 188) - Wraps a sequence of documents in an element.

:www-form-urldecode (pg. 190) - Decode a URL parameter string into a map.

T T T T

:www-form-urlencode (pg. 192) - Encode parameters into a URL string.

:xinclude (pg. 194) - Apply Xlnclude procesing to a document.
:xquery (pg. 197) - Invoke an XQuery query.

:xsl-formatter (pg. 200) - Renders an XSL-FO document.
:xslt (pg 201) - Invoke an XSLT stylesheet.

T T T T

2.2 p:add-attribute

Add (or replace) an attribute on a set of elements.

Summary

<p:declare-step type="p:add-attribute">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<option name="attribute-name" as="xs:QName" required="true"/>
<option name="attribute-value" as="xs:string" required="true"/>
<option name="match" as="xs:string" required="false" select="'/*""/>
</p:declare-step>

The p:add-attribute step adds (or replaces) an attribute. This is done for the element(s) matched by the
match option.

XProc 3.1 Step Reference

Ports:
Type Primary? |Content |Seq? Description
iTPES
source |input true xml false |The document to add (or replace) the attribute on.
html
result output true xml false |The resulting document.
html
Options:
Default Description
attribute-name xs:QName [true The name of the attribute. This may contain a namespace
specification.
attribute-value xs:string |true The value of the attribute.
match xs:string |false /* The XSLT match pattern that selects the element(s) to
(XSLT add (or replace) the attribute on. If not specified, the root
selection element is used.
pattern) This must be an XSLT match pattern that matches an
element. If it matches any other kind of node, error
XC0023 (pg. 8) is raised.

Description

The p:add-attribute step:
e Takes the document appearing on its source port.
* Processes the elements that match the pattern in the match option:

* Ifaselected element does nof contain an attribute with the name given in the attribute-name
option, an attribute with this name and a value as given in the attribute-value option is added to
it.

e Ifaselected element already has such an attribute, its value is replaced with the value given in the
attribute-value option.

* The resulting document appears on its result port.

The p:add-attribute step can only set a singl attribute. The p:set-attributes (pg 124) step can be
used to set multiple attributes at once.

Examples

Adding/replacing an attribute

This example adds a type="special” attribute to all <text> elements. One of the input <text> elements
already has such an attribute, but with a different value. This existing attribute is replaced.

Source document:

<texts>

<text>Hello there!</text>

<text>This is funny..</text>

<text type="normal">And that's normal.</text>
</texts>

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:add-attribute match="text" attribute-name="type" attribute-value="special"/>
</p:declare-step>
Result document:

<texts>
<text type="special">Hello there!</text>
<text type="special">This is funny..</text>
<text type="special">And that's normal.</text>
</texts>

XProc 3.1 Step Reference 8

Additional details

* p:add-attribute preserves all document-properties of the document(s) appearing on its source port.

e Ifan attribute called xml:base is added or changed, the base URI of the element is updated accordingly.
See also category Base URI related (pg. 213).

* You cannot use this step to add or change a namespace declaration. Attempting to do so will result in
error XCOO59 (pg. 8).
Note, however, that it is possible to add an attribute whose namespace is not in scope on the element it is
added to. The XProc namespace fixup mechanism will take care of handling this and add the appropriate
namespace declarations.

Errors raised

Error code Description
XC0023 (pg 217) It is a dynamic error if the selection pattern matches a node which is not an element.
XCe059 (pg. 217) It is a dynamic error if the QName value in the attribute-name option uses the

prefix “xmlns” or any other prefix that resolves to the namespace name http://
www.w3.0rg/2000/xmlns/.

2.3 p:add-xml-base

Add explicit xml:base attributes to a document.

Summary

<p:declare-step type="p:add-xml-base">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<option name="all" as="xs:boolean" required="false" select="false()"/>
<option name="relative" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

The p:add-xml-base step adds explicit xml:base attributes to the source document. An xml:base attribute
annotates an element with a “base URI” value, which is usually the URI this element came from.

Ports:
Primary? |Content |Seq? Description

types
source input true xml false The document to add the xml:base attributes to.

html
result output true xml false |The resulting document.

html
Options:

Default Description

all xs:boolean |[false false Whether to add the xml:base attributes to a// elements.
relative xs:boolean |false true Whether to make the value of the xml:base attributes on child

elements of the root relative instead of absolute.

Description

Nodes (elements, attributes, etc.) in XML documents “remember” where they came from: they have a so-
called “base URI” attached. This is usually the URI this node came from: the path (for instance on disk)
to the document where it belonged to. In most cases the base URI is invisible. The p:add-xml-base step
exposes this by adding (or adapting) xml:base attributes.

XProc 3.1 Step Reference

The operation of the p:add-xml-base step depends on the values of the all and relative options:

all relative Operation

false false * The root element of the document gets an xml:base attribute with an absolute URI. An
existing xml: base attribute is updated.

* Child elements where the base URI differs from its parent get an xml:base attribute
with an absolute URI. An existing xml:base attribute is updated.

* Any other xml:base attributes are removed.

false true These are the default values for these options.

* The root element of the document gets an xml:base attribute with an absolute URIL. An
existing xm1:base attribute is updated.

* Child elements where the base URI differs from its parent get an xml:base attribute
with an relative URI. An existing xml:base attribute is updated.

* Any other xml:base attributes are removed.

true false * The root element of the document gets an xml:base attribute with an abso/ute URIL. An
existing xml: base attribute is updated.

* Al child elements get an xml:base attribute with an absoluze URL An existing xm1:base
attribute is updated.

true true This is not allowed. Error XC@@58 (pg. 11) is raised.

Examples

Straight step usage

The following example shows what happens if we use p:add-xml-base straight out of the box:
Assume the following source document called in1.xml1:

<texts>
<text>Hello XProc lovers..</text>
</texts>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:add-xml-base/>
</p:declare-step>
Result document:

<texts xml:base="file:/../../inl.xml">
<text>Hello XProc lovers..</text>
</texts>

We can create an xml:base attribute on every element by setting the all option to true. Because the default
value for the relative option is true and both options can’t both be true, we have to set the relative
option to false explicitly.

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:add-xml-base all="true" relative="false"/>
</p:declare-step>
Result document:
<texts xml:base="file:/../../inl.xml">

<text xml:base="file:/../../inl.xml">Hello XProc lovers..</text>
</texts>

Multiple base URIs

The following example shows what happens if you combine two documents. For this, we’re going to use
another XML document called in2.xm1:

<specialtext>Are you in for something special?</specialtext>

XProc 3.1 Step Reference 10

The following pipeline first creates a combined document by inserting this into the same source document we
used in the previous example Straight step usage (pg: 9):

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:insert match="/*" position="last-child">
<p:with-input port="insertion" href="in2.xml"/>
</p:insert>

<p:add-xml-base/>
</p:declare-step>
The result document has a relative xml :base value on the inserted document because the default value for
the relative option is true:

<texts xml:base="file:/../../inl.xml">

<text>Hello XProc lovers..</text>

<specialtext xml:base="in2.xml">Are you in for something special?</specialtext>
</texts>

But we could also ask for absolute base URI values:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:insert match="/*" position="last-child">
<p:with-input port="insertion" href="in2.xml"/>
</p:insert>

<p:add-xml-base relative="false"/>

</p:declare-step>
Result document:

<texts xml:base="file:/../../inl.xml">

<text>Hello XProc lovers..</text>

<specialtext xml:base="file:/../../in2.xml1">Are you in for something special?</specialtext>
</texts>

Additional details

* p:add-xml-base preserves all document-properties of the document(s) appearing on its source port.

* The xml namespace prefix as used here is bound to the namespace http://www.w3.org/XML/1998/
namespace. In most cases you don # have to bind this prefix explicitly (by adding xmlns:xml="http://
www.w3.org/XML/1998/namespace"). This namespace binding is part of the XML language.

e A formal definition of base URIs and xml:base attributes can be found here (https://www.w3.org/ TR/
xmlbase/).

https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/xmlbase/

XProc 3.1 Step Reference 11

Errors raised

XCe058 (pg. 217) It is a dynamic error if the all and relative options are both true.

2.4 p:archive

Perform operations on archive files.

Summary

<p:declare-step type="p:archive">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="false"/>
<input port="archive" primary="false" content-types="any" sequence="true">
<p:empty/>
<input/>
<input port="manifest" primary="false" content-types="xml" sequence="true">
<p:empty/>
<input/>
<output port="report" primary="false" content-types="application/xml" sequence="false"/>
<option name="format" as="xs:QName" required="false" select="'zip'"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="relative-to" as="xs:anyURI?" required="false" select="()"/>
</p:declare-step>

The p:archive step can perform several different operations on archive files (for instance ZIP files). The
most common one will likely be creating one, but it could also provide services like update, freshen or even
merge. The resulting archive appears on its result port.

Ports:

Port © Primary? Content types

source input true any true The source port is used to provide the
documents to be archived. How and which of
these documents are processed is governed
by the document(s) appearing on the other
input ports and the combination of options
and parameters. See below for details.

result output |true any false |The resulting archive.

archive input false any true Optional archives for operations like update,
freshen or merge.

manifest input false xml true An optional manifest document that tells

the step how to construct the archive. If no
manifest document is provided on this port, a
default manifest is constructed automatically.
See “The XML archive manifest document
format” on page 12 for details.

report output |false application/xml false A report about the archiving operation. This
will be the same as the manifest, optionally
amended with additional attributes and/or
elements.

XProc 3.1 Step Reference 12

Options:

Default Description

format xs :QName false zip The format of the archive.

e Ifits value is zip (the default), the p:archive step
expects a ZIP archive on the source port.

* Whether any other archive formats can be handled
and what their names (values for this option) are is
implementation-defined and therefore dependent on
the XProc processor used.

parameters map(xs:QName, false O Parameters controlling the archiving. Several parameters

item()*)? are defined for processing ZIP archives (see “Handling
of ZIP archives” on page 14). A specific XProc
processor might define its own.

relative-to Xs:anyURI? false O This is option is used in creating a manifest when no
manifest is provided on the manifest port. If a manifest
is present this option is not used.

Description

The p:archive step is the Swiss army knife for handling archives. Its most common use is creating archives,
but it could also be used for operations like update, freshen or even merge.

To make all this possible, the operation of p:archive is unfortunately quite complicated. The details are
below, here’s a summary:

* What's exactly in the resulting archive is controlled using a manifest document (see “The XML archive
manifest document format” on page 12). In such a manifest you specify the URI of the document to
add and the path of this document 7z the archive.

A manifest of an existing archive, sometimes useful as a starting point, can be produced using the
p:archive-manifest (pg 18) step.

* Besides the documents in the manifest you can also specify documents to add by providing these on the
step’s source port. Any document appearing on this port that is not already mentioned in the manifest
is automatically added to the manifest. The path of such a document 7 the resulting archive can be
controlled using the relative-to option.

* When adding documents to the archive, p:archive compares the base URIs in the manifest with those
of the documents appeating on the source port (the value of the base-uri document-property). If
these match, the document on the source port is added. If not, the URI in the manifest is used to load a
document (usually from disk).

Archives come in many formats. The only format the p:archive step is required to handle is ZIP. However,
depending on the XProc processor used, other formats may also be processed.

The XML archive manifest document format

An archive manifest is an XML document that specifies files to process constructing the archive. It is also
used as the result format of the p:archive-manifest (pg. 18) step.

Its root element is <c:archive> (the c prefix here is bound to the http://www.w3.0rg/ns/xproc-step
namespace):

<c:archive>
(<c:entry> |
(any other element)
y*

</c:archive>

XProc 3.1 Step Reference 13

Child # |Description

element

c:entry |* |An entry (a file) in the archive.

A <c:entry> element describes a single entry (a file) in the archive:

<c:entry (any other attribute)
href = xs:anyURI
name = xs:string
comment? = xs:string
content-type? = xs:string
level? = xs:string
method? = xs:string >

(any child element)*
</c:entry>

Description

href 1 |xs:anyURI The URI of the entry. This plays an important role in determining
which and how files are added to the archive, see below.

A relative value is made absolute against the base URI of the
manifest itself.

name 1 |xs:string The name of the entry. This is the path of the file within the
archive.

Usually this is a relative path. However, depending on how archives
are constructed, an absolute path (a path starting with a /) is
possible. Archives constructed by XProc steps always produce
relative paths (no leading /).

comment ? |xs:string An optional comment associated with the entry.

content-type ? |xs:string The content-type (MIME type) of the entry. The p:archive step
ignores it, but the p:archive-manifest step always adds it.

level ? |xs:string The compression level of the entry. There are no defined values, all
values are XProc processor dependent.

method ? |xs:string The compression method of the entry. There is only one defined
value: none, meaning, of course, no compression. Any other values

are XProc processor dependent.

The p:archive algorithm

The p:archive step follows a, rather complicated, algorithm. It has two phases:

1 - Construct a complete manifest

First, the manifest (the document, if any, appearing on the manifest port) is checked and completed if
necessary:

* If no document appears on the manifest port, an empty manifest is created.

* The base URIs of the documents appearing on the source port are compared against the list of base
URIs in the manifest (the c:entry/@href values, made absolute). If there are documents on the soutce
port that are 7ot in the manifest, an entry (<c:entry> element) for this document is created:

* The c:entry/@href attribute becomes the base URI of the document.
* The c:entry/@name (which is the path/name of the entry in the archive) is computed against the
value of the relative-to option:
* If the base URI of the document starts with the value of the relative-to option, the
c:entry/@name attribute value becomes the substring after this.
* If the base URI of the document does not start with the value of the relative-to option, the
c:entry/@name attribute value becomes the path of this base URI (without a leading /).
For instance, assume the relative-to option is set to file:///some/path/. A document with
base URI file:///some/path/etc/x.txt gets a c:entry/@name attribute value etc/x.txt. A
document with base URI file:///someother/path/y.txt gets a c:entry/@name attribute value
someother/path/y.txt.

XProc 3.1 Step Reference 14

The result of all this is that we now have a manifest that has entries (<c:entry> elements) for all documents
appearing on the source port. It can also have entries for documents that are #oz on the source port: because
such an entry was present in the initial manifest and no matching document on the source port was found
for it.

2 - Process the manifest

The now completed manifest is processed. For every entry (<c:entry> element):

* If the value of the c:entry/@href attribute matches the base URI of one of the documents appearing
on the source port, this document is added to the archive.

When appropriate (for instance for XML documents), the value of its (optional) serialization
document-property is used for serializing it (convert it to text format).

* For other entries, the value of the c:entry/@href attribute is used to load the file (for instance from
disk if it starts with file:/) and add it to the atchive.

These documents are used “as is”: no parsing/serialization takes place.

In both cases, the value of the c:entry/@name attribute becomes the name/path of the entry in the archive.
The values of the other attributes of the <c:entry> element might also get used, but this is dependent on the
XProc processor used and/or the archive’s format.

The p:archive step is supposed to retain the order of the <c:entry> elements. This is, for instance,
important when constructing an e-book in EPUB format: this has a non-compressed entry that must be first
in the archive.

Handling of ZIP archives

When the value of the format option is absent or zip, the following applies:

* The values of the c:entry/@name attributes in the manifest must be relative paths (without a leading /).

* The archive port accepts zero or one ZIP archive. If this port is empty, an empty ZIP archive is used as
its default value.

* The parameters option is a map that associates parameters (the keys in the map) with values. For ZIP
archives, the following parameters can be used:

Parameter Description

command Specifies the operation to perform. It’s default value is update. See below for a description of
the commands.

level For entries that have no c:entry/@level attribute specified, this is the default compression
level for entries added or updated in the archive. For ZIP archives, its possible values are:

. smallest
. fastest
. default
. huffman

* none

method For entries that have no c:entry/@method attribute specified, this is the default compression
method for entries added or updated in the archive. For ZIP archives, its possible values are:

. deflated

* none

The command parameter can have one of the following values:

XProc 3.1 Step Reference

15

Command Description

update The archive appeating on the archive port is updated:
(default) * Anentry in this ZIP archive that corresponds with a c:entry/@name attribute in the
manifest gets updated as specified in the <c:entry> element.
* For other entries in the ZIP archive, first their name/path is made absolute using the base
URI of the archive. If a file exists with that URI and is newer than the entry in the ZIP
archive, it is updated.
¢ Forall <c:entry> clements in the manifest that have no corresponding entry in the ZIP
archive, the document gets added.
Please note that when there is no document on the archive port, p:archive will always create
a new, fresh, archive.
create This behaves like the update command except that timestamps are ignored and updates (if any)
always take place.
freshen This behaves like the update command except that no new files will be added.
delete For the delete command a ZIP archive must be present on the archive port. It removes all
entries in the ZIP archive that have a corresponding c:entry/@name attribute in the manifest.
All other manifest entries are ignored.
Examples

Basic usage

In probably most cases, the p:archive step will be used to create an archive. If you have no special

requirements this is easy: simply supply the documents for the archive on the step’s source port. The only
thing you need to take into account is the name/path of the entties in the archive: for this the relative-to

option is important.

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="inl.xml"/>
<p:document href="test/in2.xml"/>

</p:input>

<p:output port="result"/>

<p:variable name=

"relative-to" select="resolve-uri('.', static-base-uri())"/>

<p:archive relative-to="{$relative-to}"/>

<p:store href="tmp/result.zip"/>
<p:archive-manifest relative-to="{$relative-to}"/>

</p:declare-step>

XProc 3.1 Step Reference 16

Result document:

<c:archive xmlns:c="http://www.w3.org/ns/xproc-step">
<c:entry name="inl.xml"
content-type="application/xml"
href="file:/../../inl.xml"
method="deflated"
size="91"
compressed-size="80"
time="2025-04-15T11:33:14+02:00"/>
<c:entry name="test/in2.xml"
content-type="application/xml"
href="file:/../../test/in2.xml"
method="deflated"
size="98"
compressed-size="84"
time="2025-04-15T11:33:14+02:00"/>
</c:archive>
* The pipeline’s input consists of two documents, inl.xml and test/in2.xml. Note that (because the
p:document/@href attributes have relative values) the paths to these documents are relative to the
location of the pipeline itself.
* When we construct an archive we usually don’t want the full path of the files on disk in the archive also.
In this case we choose to use their relative paths against the pipeline. To achieve this we need the path
(directory) where the pipeline is stored. This is done with the expression resolve-uri('.", static-

base-uri()) and stored in the relative-to variable.

* We then create the archive using p:archive. The two input documents appear on its source port. We
do not provide a manifest on the manifest port, so one will get constructed automatically.

* The names of the entries in the resulting archive get constructed by “subtracting” the value of the
relative-to option from the base URIs of the source documents. The results will be their relative
names against the pipeline’s location.

* W store the resulting zip and, just to show you what’s inside, ask for an archive manifest using the
p:archive-manifest (pg. 18) step.

Using the report port

The p:archive step also has a report port that outputs the manifest of the resulting archive. So, building on
the Basic usage (pg. 15) example, we could also have shown what’s inside the created archive like this:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="inl.xml"/>
<p:document href="test/in2.xml"/>
</p:input>
<p:output port="result" pipe="report@create-archive"/>

<p:variable name="relative-to" select="resolve-uri('.', static-base-uri())"/>
<p:archive relative-to="{$relative-to}" name="create-archive"/>
<p:store href="tmp/result.zip"/>

</p:declare-step>

Result document:

<c:archive xmlns:c="http://www.w3.0org/ns/xproc-step">
<c:entry href="file:/../../inl.xml" name="inl.xml"/>
<c:entry href="file:/../../test/in2.xml" name="test/in2.xml"/>

</c:archive>

Note that the information in the manifest is less than what p:archive-manifest (pg 18) produces.
What exactly happens here is implementation-defined and therefore dependent on the XProc processor used.

Using a manifest

This example creates a manifest that references some additional file for the archive. Note that in the archive
we give it a different name than its source using the c:entry/@name attribute. When the manifest is
processed, p:archive notices that test/in2.xml is not on its source port and therefore loads it from disk.

XProc 3.1 Step Reference

17

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0" name="example">

<p:input port="source" href="inl.xml"/>
<p:output port="result"/>

<p:identity name="manifest">
<p:with-input>
<c:archive xmlns:c="http://www.w3.org/ns/xproc-step">
<c:entry name="test/extra.xml" href="test/in2.xml"/>
</c:archive>
</p:with-input>
</p:identity>

<p:variable name="relative-to" select="resolve-uri('.', static-base-uri())"/>
<p:archive relative-to="{$relative-to}">

<p:with-input pipe="source@example"/>

<p:with-input port="manifest" pipe="result@manifest"/>
</p:archive>

<p:store href="tmp/result.zip"/>
<p:archive-manifest relative-to="{$relative-to}"/>

</p:declare-step>
Result document:

<c:archive xmlns:c="http://www.w3.org/ns/xproc-step">
<c:entry name="test/extra.xml"
content-type="application/xml"
href="file:/../../test/extra.xml"
method="deflated"
size="62"
compressed-size="49"
time="2025-02-05T13:05:59+01:00"/>
<c:entry name="inl.xml"
content-type="application/xml"
href="file:/../../inl.xml"
method="deflated"
size="91"
compressed-size="80"
time="2025-04-15T11:33:14+02:00"/>
</c:archive>

Additional details

* The only document-property for the document appearing on the result portis content-type
(its value depending on the archive’s format). Note it has no base-uri document-property and no

document-properties from the document on the source or archive port survive.

* Documents appearing on the source port must have a base-uri document-property. All these base-

uri document-properties must have a unique value.

* A relative value for the relative-to option gets de-referenced against the base URI of the element in
the pipeline it is specified on. In most cases this will be the path of the pipeline document.

e The only format this step is required to handle is ZIP. The ZIP format definition can be found here

(https:/ / pkwate.cachefly.net/webdocs/ casestudies/ APPNOTE. TXT).

Errors raised

Error code Description

XCe079 (pg. 218)

It is a dynamic error if the map parameters contains an entry whose key is defined by the
implementation and whose value is not valid for that key.

XCeese (pg. 218)

It is a dynamic error if the number of documents on the archive does not match the
expected number of archive input documents for the given format and command.

XCees1 (pg. 218)

It is a dynamic error if the format of the archive does not match the format as specified in the
format option.

XCees4 (pg. 218)

It is a dynamic error if two or more documents appear on the p:archive step's source port
that have the same base URI or if any document that appears on the source port has no base
URL

XCeess (pg. 218)

Itis a dynamic error if the format of the archive does not match the specified format, cannot
be understood, determined and/or processed.

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

XProc 3.1 Step Reference 18

Error code Description

XC0100 (pg. 218) It is a dynamic error if the document on port manifest does not conform to the given
schema.

XC0112 (pg 219) It is a dynamic error if more than one document appears on the port manifest.

XC0118 (pg. 219) It is a dynamic error if an archive manifest is invalid according to the specification.

XDe011 (pg. 221) It is a dynamic error if the resource referenced by the href option does not exist, cannot be

accessed or is not a file.

XDo064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.rfc-editor.org/info/1fc3980) .

2.5 p:archive-manifest

Create an XML manifest document describing the contents of an archive file.

Summary

<p:declare-step type="p:archive-manifest">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="format" as="xs:QName?" required="false" select="()"/>
<option name="override-content-types" as="array(array(xs:string))?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="relative-to" as="xs:anyURI?" required="false" select="()"/>
</p:declare-step>

The p:archive-manifest step creates an XML manifest document describing the contents of the archive
file appearing on its source port (for instance a ZIP file).

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 19

Ports:
Type Primary? |Content types Description
source input true any false The archive file to create the manifest for.
result output true application/xml false The created XML manifest document. See the
p:archive (pg. 11) step for a description of
its format.
Options:
Regq? Default Description
format xs :QName? false O The format of the archive file on the source
port:

e Ifits value is zip, the p:archive-
manifest step expects a ZIP archive on
the source port.

e If absent or the empty sequence, the
p:archive-manifest step tries to guess
the archive file format. The only format
that this step is required to recognize and
handle is ZIP.

* Whether any other archive formats can
be handled and what their names (values
for this option) are depends on the XProc
processor used.

override-content- |array(array false O Use this to override the content-type
types (xs:string))? determination of the files in the archive (see
“Overriding content-types” on page 20).
parameters map (xs :QName, false O Parameters used to control the XML manifest
item()*)? document generation. The XProc specification

does not define any parameters for this option.
A specific XProc processor might define its
own.

relative-to Xs:anyURI? false O This option can be used to set/override the
base URI of the archive. If you don’t specify it,
it is, as expected, the base URI of the document
appearing on the source port. The use of this
option is rare, but you might need it when:

* The archive on the source port has no
base-uri document-property. This would
raise error XC0120 (pg. 22).

* You use this manifest as a base for creating
a new one with p:archive (pg. 11).
The base URI plays an important role here
and setting it to specific value is sometimes
useful.

Description

The p:archive-manifest step takes an archive file (for instance a ZIP file) on its source port and returns

on its result port an XML document describing the contents of the archive: the archive manifest. The archive

manifest format is described in the p:archive (pg. 11) step.

Archive manifests can be used in several ways. Some examples:

* To inspect which files are present in an archive, for instance to check whether what you’ve got is
complete.

* Asan input manifest for p:archive (pg. 11). This step takes, on its manifest port, a manifest like
the one produced by p:archive-manifest and uses this to create a new archive or update an existing
one. You could for instance first get a manifest using p:archive-manifest, change it to reflect the
changes you need and then feed it to p:archive (pg. 11) to produce a new archive.

Archives come in many formats. The only format the p:archive-manifest step is required to handle is

Z1IP. However, depending on the XProc processor used, other formats may also be processed.

XProc 3.1 Step Reference 20

Overriding content-types

One of the things the p:archive-manifest step does is determining the content-type (MIME type) of the
archive entries. This is usually done based on the filename/extension. It is recorded in the manifest c:entry/
@content-type attribute.

Sometimes it is useful to override this mechanism and assign specific content-types to some of the entries.
For instance, the files Microsoft Office produces (.docx, .x1sx, etc.) ate archives with a lot of XML
documents inside. Some of these documents have the extension .rels and would therefore not be
recognized as XML documents. The override-content-types option makes it possible to adjust this
behavior.

The value of the override-content-types option must be an array of arrays. The inner arrays must have
exactly two members:

* The first member must be an XPath regular expression.

* The second member must be a valid a MIME content-type.

Determining an archive entry’s content-type is now as follows:

* The inner arrays of the override-content-types option value are processed in order of appearance
(so order is significant).

* The XPath regular expression (in the first member of the inner array) is matched against the full path of
an entry 7z the archive (as in matches($path-in-archive, $regular-expression)).

e Ifa match is found, the content-type (the second member of the inner array) is used as the entry’s
content-type.

* If no match was found for all the inner arrays, the normal mechanism for determining the content-type is
used.

For example: setting the override-content-types optionto [['.rels$', 'application/xml'],

['~special/', 'application/octet-stream']] means that all files ending with .rels will get the

content-type application/xml. All files in the archive’s special directory (including sub-directories)

will get the content-type application/octet-stream. See also the Overriding content types (pg 21)

example.

Examples

Basic usage

Assume we have a simple ZIP archive with two entries:

* An XML file in the root called reference.xml

* Animage in an images/ sub-directory called logo.png.

The following pipeline creates an archive manifest for this ZIP file:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:archive-manifest/>
</p:declare-step>
Resulting archive manifest:

<c:archive xmlns:c="http://www.w3.org/ns/xproc-step">
<c:entry name="images/logo.png"
content-type="image/png"
href="file:/../../test.zip/images/logo.png"
method="deflated"
size="86656"
compressed-size="85694"
time="2024-07-04T11:12:22.4+02:00"/>
<c:entry name="reference.xml"
content-type="application/xml"
href="file:/../../test.zip/reference.xml"
method="deflated"
size="78"
compressed-size="77"
time="2024-07-09T19:58:50.75+02:00" />
</c:archive>

XProc 3.1 Step Reference 21

As you can see, the XProc processor I’'m using to process this example (MorganaXProc-11I) adds a few extra
attributes to the <c:entry> elements: size, compressed-size and time.

Also note the contents of the c:entry/@href atttibutes: they ate a combination of the full path/filename of
the archive and the path of the entry within the archive (as in the c:entry/@name attribute). The c:entry/
@href attribute plays an important role when creating archives using p:archive (pg. 11).

Overriding content types

This example uses the same ZIP archive as in Basic usage (pg. 20). The following pipeline explicitly sets
the content type for .png files to application/octet-stream:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:archive-manifest>
<p:with-option name="override-content-types" select="[['\.png$', 'application/octet-stream']]"/>
</p:archive-manifest>

</p:declare-step>
Resulting archive manifest:

<c:archive xmlns:c="http://www.w3.org/ns/xproc-step">
<c:entry name="images/logo.png"
content-type="application/octet-stream"
href="file:/../../test.zip/images/logo.png"
method="deflated"
size="86656"
compressed-size="85694"
time="2024-07-04711:12:22.4+02:00"/>
<c:entry name="reference.xml"
content-type="application/xml"
href="file:/../../test.zip/reference.xml"
method="deflated"
size="78"
compressed-size="77"
time="2024-07-09719:58:50.75+02:00" />
</c:archive>

Using the relative-to option

This example uses the same ZIP archive as in Basic usage (pg. 20). It sets the relative-to to file:///
test/. This is reflected in the c:entry/@href attributes:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:archive-manifest relative-to="file:///test/"> </p:archive-manifest>

</p:declare-step>
Resulting archive manifest:

<c:archive xmlns:c="http://www.w3.0org/ns/xproc-step">
<c:entry name="images/logo.png"
content-type="image/png"
href="file:///test/images/logo.png"
method="deflated"
size="86656"
compressed-size="85694"
time="2024-07-04T11:12:22.4+02:00"/>
<c:entry name="reference.xml"
content-type="application/xml"
href="file:///test/reference.xml"
method="deflated"
size="78"
compressed-size="77"
time="2024-07-09T19:58:50.75+02:00" />
</c:archive>

XProc 3.1 Step Reference 22

Additional details

* The only document-property for the document appearing on the result is content-type, with value
application/xml. Note it has no base-uri document-property and no document-properties from the
document on the source port survive.

* A relative value for the relative-to option gets de-referenced against the base URI of the element in
the pipeline it is specified on. In most cases this will be the path of the pipeline document.

* The only format this step is required to handle is ZIP. The ZIP format definition can be found here
(https:/ / pkware.cachefly.net/webdocs/ casestudies/ APPNOTE. TXT).

Errors raised

Error code Description

XCe079 (pg 218) It is a dynamic error if the map parameters contains an entry whose key is defined by the
implementation and whose value is not valid for that key.

XC0085 (pg. 218) It is a dynamic error if the format of the archive does not match the specified format, cannot
be understood, determined and/or processed.

XC0120 (pg. 219) It is a dynamic error if the relative-to option is not present and the document on the
source port does not have a base URI.

XC0146 (pg. 220) It is a dynamic error if the specified value for the override-content-types option is not an
array of arrays, where the inner arrays have exactly two members of type xs:string.

XC0147 (pg. 220) It is a dynamic error if the specified value is not a valid XPath regular expression.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.tfc-editor.org/info/1fc3980) .

XDe079 (pg. 221) It is a dynamic error if a supplied content-type is not a valid media type of the form “

«

”»

type/subtype+ext ” or “ type/subtype

2.6 p:cast-content-type

Changes the media type of a document.

Summary

<p:declare-step type="p:cast-content-type">

<input port="source" primary="true" content-types="any" sequence="false"/>

<output port="result" primary="true" content-types="any" sequence="false"/>

<option name="content-type" as="xs:string" required="true"/>

<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:cast-content-type step takes the document appearing on its source port and changes its media
type according to the value of the content-type option, transforming the document if necessary.

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 23

Ports:
Type Primary? |Content |Seq? Description
iTPES
source |input true any false |The document to change the media type of.
result ‘output true ‘any ‘-False ‘The resulting document. ‘
Options:

Type Reqp Default Description

content-type |xs:string true The media type of the resulting document.

This must be a valid media type (cither type/

subtype or type/subtype+ext). If not, error XDO@79
(pg 29) is raised.

parameters map (xs :QName, false @) Parameters controlling the casting/transformation of the
item()*)? document. Keys, values and their meaning are dependent

on the XProc processor used.

Description

A document flowing through an XProc pipeline has a wedia type, which tells the XProc processor what kind
of document it is dealing with. The media type of a document is recorded in its content-type document-
property. Example values are text/xml for XML documents, application/json for JSON documents,
etc. For more information about media types see for example Wikipedia (https://en.wikipedia.org/wiki/
Media_type).

The p:cast-content-type step has a required content-type option and tries to cast (change) the media
type of the document appearing on its source port according to the value of this option. Sometimes this is a
(very) simple operation: for instance, changing one XML media type to another just changes the value of the
content-type document-property. However, you can also request more complex changes, like converting an
XML document into JSON or vice versa.

Of course, not every media type can be cast into every other media type. The following sections describe
what you can (and cannot) do. If you request an impossible cast, error XC0071 (pg, 28) is raised.

A brief explanation of media types and how XProc treats them can be found in the “XProc media type
usage” on page 25 section below.

Converting XML documents

When the input document is an XML document (has an XML media type), the following casts are supported:
* Casting to another XML media type simply changes the content-type document-property.

* Casting to an HTML media type changes the content-type document-property and removes any
serialization document-property.

* Casting to a JSON media type converts the XML into JSON:

* The XPath and XQuery Functions and Operators 3.1 (https://www.w3.org/TR/xpath-functions-31)
standard defines an XML format for the representation of JSON data (https://www.w3.org/
TR/xpath-functions-31/#json-to-xml-mapping). The XPath function xml-to-json() (https://
www.w3.otg/ TR/xpath-functions-31/#func-xml-to-json) convetts this format into a JSON
conformant string (and for further processing, parse-json() (https://www.w3.org/TR/xpath-
functions-31/#func-patse-json) turns this string into a map/array).

If an input document of p:cast-content-type is conformant to this XML format for the
representation of JSON data (https://www.w3.otg/ TR/xpath-functions-31/#json-to-xml-mapping),
it’s converted into its JSON equivalent (like calling parse-json(xml-to-json())). See Converting
the XML representation of JSON (pg 26) for an example.

e If the input document has a <c:param-set> root element and <c:param name=".." value=".."/
> child elements (the ¢ prefix here is bound to the http://www.w3.0rg/ns/xproc-step
namespace), it will turn this into a JSON map with the values of the name attributes as keys. See the
Converting param-sets (pg. 26) example.

https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Media_type
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#func-xml-to-json
https://www.w3.org/TR/xpath-functions-31/#func-xml-to-json
https://www.w3.org/TR/xpath-functions-31/#func-parse-json
https://www.w3.org/TR/xpath-functions-31/#func-parse-json
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping

XProc 3.1 Step Reference 24

Param-sets are an XProc 1.0 construct, used for passing parameters (there were no maps in those
days). Unless you’re converting XProc 1.0 steps into 3.x, it’s unlikely you’ll need this feature.
* Inall other cases it’s up to the XProc processor what happens. It could turn your XML into some
kind of JSON, but it could just as well raise an error.
A serialization document-property is removed when converting to JSON.
Casting to a text media type converts the XML into text. The incoming XML comes out as text, as a
string, complete with tags, attributes, etc.
The result of this conversion is the same as calling the XPath serialize($doc, $param) (https://
www.w3.org/ TR/xpath-functions-31/#func-serialize) function, where $doc is the document to convert
and $paramis its serialization document-property. See the Converting XML to text (pg. 27)
example.
A serialization document-property is removed.
Casting to any other media type where the input document is a <c:data> document (see “c:data
documents” on page 25) results in a document with the specified media type and a representation
that is the content of the <c:data> element after decoding it. The value of the c:data/@content-type
attribute and the value of the content-type option of p:cast-content-type must be the same!
A serialization document-property is removed.
Casting to any other media type where the input is not a valid <c:data> document is implementation-
defined and therefore dependent on the XProc processor used.

Converting HTML documents

When the input document is an HTML document (has an HTML media type), the following casts are
supported:

Casting to another HTML media type simply changes the content-type document-property.

Casting to an XML media type changes the content-type document-property and removes a
serialization document-property.

Casting to a JSON media type is implementation-defined and therefore dependent on the XProc
processor used.

Casting to a text media type works the same as casting an XML media type to text. See “casting XML to
text” on page 24 above.

Casting to any other media type is implementation-defined and therefore dependent on the XProc
processor used.

Converting JSON documents

When the input document is a JSON document (has a JSON media type), the following casts are supported:

Casting to another JSON media type simply changes the content-type document-property.

Casting to an HTML media type is implementation-defined and therefore dependent on the XProc
processor used.

Casting to an XML media type converts the JSON into XML according to the rules specified in the
XPath XML format for the representation of JSON data (https://www.w3.0tg/ TR/xpath-functions-31/
#json-to-xml-mapping). See the Converting JSON into XML (pg. 27) example.

A serialization document-property is removed.

Casting to a text media type converts the JSON into text. The incoming JSON (which in XProc consists
of maps/atrays) comes out as text, as a string.

The result of this conversion is the same as calling the XPath serialize($doc, $param) (https://
www.w3.otg/ TR/xpath-functions-31/#func-serialize) function, where $doc is the document to convert
and $param is its serialization document-property.

A serialization document-property is removed.

Casting to any other media type is implementation-defined and therefore dependent on the XProc
processor used.

https://www.w3.org/TR/xpath-functions-31/#func-serialize
https://www.w3.org/TR/xpath-functions-31/#func-serialize
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#func-serialize
https://www.w3.org/TR/xpath-functions-31/#func-serialize

XProc 3.1 Step Reference 25

Converting text documents

When the input document is an text document (has a text media type), the following casts are supported:

* Casting to another text media type simply changes the content-type document-property.

* Casting to an XML media type parses the text value of the document by calling the XPath parse-xml()
(https:/ /www.w3.org/TR/xpath-functions-31/#func-parse-xml) function. This assumes of course that
the text is a well-formed XML document. If not, error XD@049 (pg; 28) is raised.

* Casting to an HTML media type parses the document into an HTML document. How this is done is
implementation-defined and therefore dependent on the XProc processor used. If unsuccessful, error
XD0O60 (pg: 29) is raised.

* Casting to a JSON media type parses the document by calling the XPath parse-json($doc, $param)
(https:/ /www.w3.org/ TR /xpath-functions-31/#func-parse-json) function, where $doc is the document
to convert and $param is its serialization document-property.

A serialization document-property is removed.

* Casting to any other media type is implementation-defined and therefore dependent on the XProc

processor used.

Converting other media types

When the input document has any other media type (meaning XProc treats it as a binary document), the

following casts are supported:

* Casting from an unrecognized media type to an XML media type produces a <c:data> document (see
“c:data documents” on page 25). The <c:data/@content-type> attribute is the document’s content
type. The content of the c:data element is the base64 encoded representation of the document. See the
Converting a binary media type into XML (pg. 28) example.

A serialization document-property is removed.

* Casting from an unrecognized media type to a HTML, JSON, text or other unrecognized media type is

implementation-defined and therefore dependent on the XProc processor used.

c:data documents

The p:cast-content-type step uses <c:data> documents to convert XML from and into binary media
types (the ¢ prefix here is bound to the http://www.w3.0rg/ns/xproc-step namespace):
<c:data content-type = xs:string

charset? = xs:string
encoding? = xs:string />

Description

content-type 1 |xs:string The MIME type of the content.

charset ? |xs:string The character set of the content, for instance UTF-8 or ASCII. For
an explanation of character encodings see Wikipedia.

encoding ? |xs:string The encoding of the content. The most used encoding is base64
(see Wikipedia).

XProc media type usage

A document media tjpe (in XProc passed around in the content-type document-property) tells XProc
(and your code if it needs to know this) what kind of document we’re dealing with: the document type. XProc
recognizes and handles five document types: XML, HTML, JSON, text and binary.

The relation between document type and media type is as follows:

Document Media types Examples

type

XML */xml text/xml
/+xml except application/xml
application/xhtml+xml |image/svg+xml

HTML text/html text/html
application/xhtml+xml |application/xhtml+xml

https://www.w3.org/TR/xpath-functions-31/#func-parse-xml
https://www.w3.org/TR/xpath-functions-31/#func-parse-xml
https://www.w3.org/TR/xpath-functions-31/#func-parse-json
https://www.w3.org/TR/xpath-functions-31/#func-parse-json
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/Base64

XProc 3.1 Step Reference 26

Document Media types Examples
t_vpe
JSON application/json application/json
Text text/* text/plain
(not matching one of the text/csv
XML or HTML media
types)
Binary Anything else image/jpeg
application/octet-stream
application/zip

Examples

Converting the XML representation of JSON

If an input document of p:cast-content-type is conformant to the XPath XML format for the
representation of JSON data (https://wwww3.otg/TR/xpath-functions-31/#json-to-xml-mapping) and the
content-type option is a [SON media type, p:cast-content-type converts this into its JSON equivalent.

The following source document is a shortened version of the example in the XPath standard:

<map xmlns="http://www.w3.0rg/2005/xpath-functions">
<string key="desc">Distances </string>
<boolean key="uptodate">true</boolean>
<null key="author"/>
<map key="cities">
<array key="Brussels">
<map>
<string key="to">London</string>
<number key="distance">322</number>
</map>
</array>
</map>
</map>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:cast-content-type content-type="application/json"/>
</p:declare-step>
The resulting JSON map:

{"desc":"Distances ","uptodate":true,"author":null,"cities":{"Brussels":[{"to":"London","distance":322}]}}

Converting param-sets

Param-sets are constructs used in the XProc 1.0 days for passing sets of parameters, for instance to XSLT
stylesheets. The current version uses maps for this. To enable converting param-sets into maps, p:cast-
content-type contains support for this. In XProc, a map is JSON data, so the content-type option must
be a JSON media type.

The soutce param-set document:

<c:param-set xmlns:c="http://www.w3.org/ns/xproc-step">

<c:param name="paraml" value="y"/>
<c:param name="param2" value="1234"/>
</c:param-set>
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:cast-content-type content-type="application/json"/>

</p:declare-step>

https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping

XProc 3.1 Step Reference 27

The resulting JSON map:
{"param1":"y","param2":"1234"}

JSON maps are passed around as XPath maps, so it’s easy to store such a map in a variable and use it later.
Just add the following variable declaration directly after the p:cast-content-type invocation:

<p:variable name="param-set-map" as="map(*)" select="."/>

Unless you're converting XProc 1.0 code into a newer version, i’s unlikely you’ll need this param-set
conversion feature.

Converting XML to text

Let’s convert this simple XML document into text:

<input-document timestamp="2024-08-23709:12:45">
<text color="red">Hi there!</text>
</input-document>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:cast-content-type content-type="text/plain"/>
</p:declare-step>
The resulting zext (it looks like it is another XML document, but it is just text):

<?xml version="1.0" encoding="utf-8"?><input-document timestamp="2024-08-23T709:12:45">
<text color="red">Hi there!</text>
</input-document>
Now assume we need this text representation without the XML header (the <?xml .. ?> part at the top).
The p:cast-content-type step uses the document serialization document-property to guide the
conversions. This document-property is a map containing the required serialization propertes (https://
www.w3.org/ TR/xslt-xquery-serialization-31/). For this example: map{'omit-xml-declaration':
true()}.
Document-properties can be specified using the p:set-properties (pg 126) step. The value of
the properties option of p:set-properties is itself a map, with the document-property names as
keys. Therefore, its value becomes a map within a map: map{ 'serialization': map{'omit-xml-
declaration': true()}}.
The following code (using the same input document as above) does the trick:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:set-properties properties="map{'serialization': map{'omit-xml-declaration': true()}}"/>
<p:cast-content-type content-type="text/plain"/>
</p:declare-step>
Result document:
<input-document timestamp="2024-08-23709:12:45">

<text color="red">Hi there!</text>
</input-document>

Converting JSON into XML

Converting JSON into XML means p:cast-content-type produces XML according to the XPath XML
format for the representation of JSON data (https://www.w3.otg/TR/xpath-functions-31/#json-to-xml-
mapping) specification. Here we do the inverse of what is done in the Converting the XML representation of
JSON (pg. 26) example.

Source document:

{"desc":"Distances", "uptodate":true, "author":null,"cities":{"Brussels":[{"to":"London","distance":322}]}}

https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping
https://www.w3.org/TR/xpath-functions-31/#json-to-xml-mapping

XProc 3.1 Step Reference 28

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:cast-content-type content-type="text/xml"/>
</p:declare-step>
Result document:

<map xmlns="http://www.w3.0rg/2005/xpath-functions">
<string key="desc">Distances</string>
<boolean key="uptodate">true</boolean>
<null key="author"/>
<map key="cities">
<array key="Brussels">
<map>
<string key="to">London</string>
<number key="distance">322</number>
</map>
</array>
</map>
</map>

Converting a binary media type into XML

This example transforms a piece of text that has been given the (bogus) media type of x/x into XML.
Because XProc does not recognize this media type, it treats the document as binary. The result of the
p:cast-content-type step is the document’s base64 encoded contents, wrapped in a <c:data> element.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source">

<p:inline content-type="x/x">Hi there!</p:inline>
</p:input>
<p:output port="result"/>

<p:cast-content-type content-type="text/xml"/>
</p:declare-step>
Result document:

<c:data xmlns:c="http://www.w3.org/ns/xproc-step"

content-type="x/x"
encoding="base64" >SGkgdGhlcmUh</c:data>

Additional details

* If the value of the content-type option and the media type of a document are the same, the document
will appear unchanged on the result port.

* p:cast-content-type preserves all document-properties of the document(s) appearing on its source
port.

Exceptions are the content-type document-property which is updated accordingly and the
serialization document-property which is sometimes removed.

Errors raised

Error code Description

XCe071 (pg. 218) It is a dynamic error if the <p:cast-content-type> step cannot perform the requested cast.

XCe072 (pg 218) It is a dynamic error if the <c:data> contains content is not a valid base64 string.

XCe073 (pg 218) It is a dynamic etror if the <c:data> element does not have a @content-type attribute.

XCe074 (pg. 218) It is a dynamic error if the content-type is supplied and is not the same as the @content-
type specified on the <c:data> element.

XCe079 (pg. 218) It is a dynamic error if the map parameters contains an entry whose key is defined by the
implementation and whose value is not valid for that key.

XDoo49 (pg. 221) It is a dynamic error if the text value is not a well-formed XML document

XDOO57 (pg. 221) It is a dynamic error if the text document does not conform to the JSON grammar, unless the

parameter liberal is true and the processor chooses to accept the deviation.

XProc 3.1 Step Reference 29

Error code Description

XDoO58 (pg. 221) It is a dynamic error if the parameter duplicates is reject and the text document contains a
JSON object with duplicate keys.

XD@O59 (pg. 221) It is a dynamic error if the parameter map contains an entry whose key is defined in the
specification of fn:parse-json and whose value is not valid for that key, or if it contains an
entry with the key fallback when the parameter escape with true() is also present.

XD0060 (pg. 221) It is a dynamic error if the text document can not be converted into the XPath data model

XD0079 (pg. 221) It is a dynamic error if a supplied content-type is not a valid media type of the form “
type/subtype+ext ” or “ type/subtype

”»

2.7 p:compare

Compares documents for equality.

Summary

<p:declare-step type="p:compare">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<input port="alternate" primary="false" content-types="any" sequence="false"/>
<output port="differences" primary="false" content-types="any" sequence="true"/>
<option name="fail-if-not-equal" as="xs:boolean" required="false" select="false()"/>
<option name="method" as="xs:QName?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p: compare step compares the documents appearing on its source and alternate for equality. It
returns a simple XML document containing the boolean result of the comparison.

Ports:
Primary? Content types Description
source input true any false Source document to compate.
result output |true application/xml false An XML document consisting of a single

<c:result> element (the c prefix here is
bound to the http://www.w3.0rg/ns/
xproc-step namespace) containing true
when the documents compare as equal or
false when differences were found.
Example: <c:result
xmlns:c="http://www.w3.org/ns/
xproc-step">true</c:result>

alternate input false any false Source document to compare.

differences output |false any true If the fail-if-not-equal option

is false and differences were found,
this port zay submit a summary of
the differences. The existence and
format of this summary document is
implementation-defined and therefore
depends on the XProc processor used.

XProc 3.1 Step Reference 30

Options:
Default Description
fail-if-not-equal |xs:boolean false false If this option is true and the documents do not
compate as equal, the step raises error XC0019
(pgs 31).
method xS :QName? false @) Specifies the comparison method used. If the value

of this option is the empty sequence (default) or
deep-equal, p: compare must do the same as the
XPath deep-equal() (https://www.w3.org/TR/
xpath-functions-31/#func-deep-equal) function.
Support for any other comparison method is
implementation-defined and therefore depends on
the XProc processor used.

parameters map (xs :QName, false @) Parameters controlling the comparison. Keys, values
item()*)? and their meaning depend on the value of the
method option and the XProc processor used.

Description

The p:compare step takes the documents appearing on its source and alternate ports and tests whether
these are equal. Now testing XML documents for equality is not as easy as it sounds: what to do with
whitespace, comments, order of attributes, etc. The default behavior of p:compare is the same as that of the
XPath deep-equal() (https://www.w3.otg/TR/xpath-functions-31/#func-deep-equal) function. Whether
other comparison methods are supported is implementation-defined and therefore dependent on the XProc
processor used.

If the fail-if-not-equal option is false (default), the step emits a simple XML document on its
result port, saying true (equal) or false (not equal). If the fail-if-not-equal option is true and the
documents are not equal, error XCO0O19 (pg, 31) is raised.

Examples

Comparing two documents

The following document is compared against what we supply on the alternate port. In this example the
comparison checks out and p: compare returns true.

<texts>
<text>Hi there!</text>
</texts>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:compare>
<p:with-input port="alternate">
<texts>
<text>Hi there!</text>
</texts>
</p:with-input>
</p:compare>

</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">true</c:result>

Additional details

* No document-properties from the documents on the source and/or alternate ports survive. The
resulting document has a content-type document-property set to application/xml and no base-uri
document-property.

https://www.w3.org/TR/xpath-functions-31/#func-deep-equal
https://www.w3.org/TR/xpath-functions-31/#func-deep-equal
https://www.w3.org/TR/xpath-functions-31/#func-deep-equal

XProc 3.1 Step Reference 31

Errors raised

Error code Description

XCe019 (pg. 217) It is a dynamic error if the documents are not equal according to the specified comparison
method, and the value of the fail-if-not-equal option is true.

XC0076 (pg. 218) It is a dynamic error if the comparison method specified in <p: compare> is not supported by
the implementation.

XC0077 (pg. 218) It is a dynamic error if the media types of the documents supplied are incompatible with the
compatrison method.

2.8 p:compress

Compresses a document.

Summary

<p:declare-step type="p:compress">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="any" sequence="false"/>
<option name="format" as="xs:QName" required="false" select="'gzip'"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="serialization" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:compress step serializes the document appearing on its source port and outputs a compressed

version of this on its result port.

Ports:
Type Primary? |Content |Seq? Description
types
source input true any false The document to compress.
result |output true any false |The resulting compressed document
Options:

Default Description

format xs :QName false gzip Specifies the format of the source document. The value
gzip (default) results in a document compressed using
the GZIP (https:/ /datatracket.ictf.org/doc/html/
rfc1952) format.

Support for any other compression format is
implementation-defined and therefore dependent on
the XProc processor used.

parameters map (xs :QName, false O Parameters controlling the compression. Keys, values
item()*)? and their meaning depend on the value of the method
option and the XProc processor used.
serialization map(xs:QName, false O Before the document is compressed, it is first serialized
item()*)? (as if written to disk). This option can supply a map

with serialization properties (https://www.w3.org/
TR/xslt-xquery-setialization-31/), controlling this
serialization.

If the source document has a serialization
document-property, the two sets of serialization
properties are merged (properties in the document-
property have precedence).

Description

The p:compress step first serializes the document appearing on its source. It then compresses the outcome
of this serialization using the format as specified in the format option. The result, usually a binary document,
appears on its result port.

https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/

XProc 3.1 Step Reference 32

The only compression format that must be supported is GZIP (https://datatracker.ietf.org/doc/html/
rfc1952). Support for any other compression format is implementation-defined and therefore dependent on
the XProc processor used.

The reverse uncompress operation is supported by the p:uncompress (pg. 152) step.

Additional details

* p:compress preserves all document-properties of the document(s) appearing on its source port.

Exceptions are the content-type document-property which is updated accordingly and the
serialization document-property which is removed.

Errors raised

Error code Description

XC0079 (pg 218) It is a dynamic error if the map parameters contains an entry whose key is defined by the
implementation and whose value is not valid for that key.

XC0202 (pg. 220) It is a dynamic error if the compression format cannot be understood, determined and/or
processed.

2.9 p:count

Count the number of documents.

Summary

<p:declare-step type="p:count">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="limit" as="xs:integer" required="false" select="0"/>

</p:declare-step>

The p: count step counts the number of documents appearing on its source port and returns an XML

document on its result port containing that number.

Ports:

Content types ? Description
source input true any true The sequence of documents to count.
result output true application/xml false An XML document consisting of a single

<c:result> element containing the number of
documents on the source port, or the limit set
by the 1imit option (the ¢ prefix here is bound
to the http://www.w3.0org/ns/xproc-step
namespace).

Example: <c:result xmlns:c="http://
www.w3.org/ns/xproc-step">3</c:result>

Options:
Default |Description
limit xs:integer false 2] If the value of this option is greater than 0, the p: count will count at
most that many documents. See the Limiting the count (pg. 34)
example.

Since p:count will stop processing documents on its source when
this limit is reached, this provides an efficient mechanism to discover
if a sequence consists of more than X documents.

Description

The p:count step simply counts the number of documents appearing on its source port. It emits a very
simple document on its result port containing this number, wrapped in a <c:result> element (the c prefix
here is bound to the http://www.w3.org/ns/xproc-step namespace). For example: <c:result>3</
c:result>.

https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952

XProc 3.1 Step Reference 33

Using this step you can find out how many documents are flowing through your pipeline and make decision
based on that number. For instance: stop processing if there are too many.

There is another way of doing this, see the Alternative to p:count (pg. 34) example. This is probably

easier, because the required count is directly in a variable and the flow of documents in the pipeline is not
interrupted. Which method (p: count or a count variable) is faster is hard to say and probably dependent on
the XProc processor used. If this matters to you, you’ll have to do some experiments.

Examples

Basic usage

The following pipeline produces a sequence of 3 documents and counts these:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>

</p:input>

<p:output port="result"/>

<p:count/>
</p:declare-step>
Result document:
<c:result xmlns:c="http://www.w3.org/ns/xproc-step">3</c:result>
Using this count to make a decision could be done as follows:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>

</p:input>

<p:output port="result"/>

<p:count/>

<p:choose>
<p:when test="number(.) eq 3">
<p:identity>
<p:with-input>
<count-is-exactly-3/>
</p:with-input>
</p:identity>
</p:when>
<p:otherwise>
<p:identity>
<p:with-input>
<count-is-not-3/>
</p:with-input>
</p:identity>
</p:otherwise>
</p:choose>

</p:declare-step>
Result document:

<count-is-exactly-3/>

XProc 3.1 Step Reference

34

Limiting the count

The following pipeline produces a sequence of 3 documents and counts these with a limit of 1:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>

</p:input>

<p:output port="result"/>

<p:count limit="1"/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">1</c:result>

Alternative to p:count

You don’t need p: count to count documents. An alternative is to declare a variable that gets its value by

counting the size of the collection of documents flowing through it:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>
<p:document href="inl.xml"/>

</p:input>

<p:output port="result"/>

<p:variable name="count" select="count(collection())" collection="true"/>

<p:identity>
<p:with-input>
<document-count>{$count}</document-count>
</p:with-input>
</p:identity>

</p:declare-step>
Result document:

<document-count>3</document-count>

The p:identity after the variable declaration is only there for demonstration purposes: to
show the value of the count. In a real pipeline you would probably follow it up with a <p:if> or
<p:choose>/<p:when>/<p:otherwise> and make some decision based on the document count.

Additional details

* No document-properties from the documents on the source port survive. The resulting document has a

content-type document-property set to application/xml and no base-uri document-property.

2.10 p:css-formatter

Renders a document using CSS formating,

Summary

<p:declare-step type="p:css-formatter">

<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="any" sequence="false"/>
<input port="stylesheet" primary="false" content-types="text" sequence="true">

<p:empty/>
<input/>

<option name="content-type" as="xs:string?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>

</p:declare-step>

XProc 3.1 Step Reference 35

The p:css-formatter step rendets an XML or HTML document using CSS formatting (https://
www.w3.0tg/ TR/ css-2018/), usually into PDE The CSS stylesheets for this must be present on the
stylesheet port. The resulting rendition appeats, as a binary document, on the result port.

Ports:
Primary? Content Seqr Description
types
source input true xml false The XML or HTML document to render.
html
result output |true any false The resulting rendition.
stylesheet input false text true The CSS stylesheets to use for the rendering,
Options:

Default Description

content-type xs:string? false @) The content-type (media type) of the rendition that
appears on the result port. The default value is
application/pdf. Whether any other formats are
supported is implementation-defined and therefore
dependent on the XProc processor and renderer used.
This option may include media type parameters as well
(for instance application/pdf; charset=UTF-8).

parameters map(xs :QName, false @) Parameters used to control the rendering, The XProc
item()*)? specification does not define any parameters for this
option. A specific XProc processor (or renderer used)
might define its own.

Description

The p:css-formatter step allows you to transform XML or HTML into some kind of rendition, usually
PDF, by applying CSS formatting (https://www.w3.0tg/TR/css-2018/). Most likely, CSS Paged Media
(https:/ /www.w3.otg/ TR/ css-page-3/) will be used.

In most cases, p:css-formatter relies on an external CSS formatter. Youll probably have to do some
XProc processor dependent configuration before this step will work. Please consult the XProc processor
documentation about this.

Examples

Basic usage

The following pipeline transforms some XML document into PDF using p:css-formatter, and stores it as
result.pdf:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="result-uri@store-pdf"/>
<p:css-formatter content-type="application/pdf">
<p:with-input port="stylesheet" href="my-paged-media-stylesheet.css"/>
</p:css-formatter>
<p:store href="result.pdf" name="store-pdf"/>

</p:declare-step>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

https://www.w3.org/TR/css-2018/
https://www.w3.org/TR/css-2018/
https://www.w3.org/TR/css-2018/
https://www.w3.org/TR/css-page-3/
https://www.w3.org/TR/css-page-3/

XProc 3.1 Step Reference 36

Errors raised

Error code Description

XCo166 (pg. 220) It is a dynamic error if the requested document cannot be produced.

XC0204 (pg. 221) It is a dynamic error if the requested content-type is not supported.

XDo079 (pg. 221) It is a dynamic error if a supplied content-type is not a valid media type of the form
type/subtype+ext ” or « type/subtype .

2.11 p:delete

Delete nodes in documents.

Summary

<p:declare-step type="p:delete">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="text xml html" sequence="false"/>
<option name="match" as="xs:string" required="true"/>

</p:declare-step>

The p:delete step deletes nodes, specified by an XSLT selection pattern, from the document appearing on
its source port.

Ports:
Type Primary? |Content |Seq? Description
types
source input true xml false The document to delete the nodes from.
html
result output true text false |The resulting document.
xml
html
Options:
Description
match xs:string |[true The XSLT match pattern for the nodes to delete, as a string,
(XSLT
selection
pattern)
Description

The p:delete step takes the XSLT match pattern in the match option and holds this against the document
appearing on its source port. Any matching nodes are deleted (including child nodes, if any). The resulting
document appears on the result port.

Note that deleting an element means that the entire element, including child elements, gets deleted. If you just
want to delete the element but keep its child elements, you need p:unwrap (pg. 154).

Examples

Basic usage

The following example deletes all <text> elements with an attribute type="normal" from the source
document.

Source document:

<texts>
<text>Hello there!</text>
<text>This is funny..</text>
<text type="normal">And that's normal.</text>
<text type="normal">Very normal..</text>
</texts>

XProc 3.1 Step Reference 37

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:delete match="text[@type eq 'normal']"/>
</p:declare-step>
Result document:

<texts>
<text>Hello there!</text>
<text>This is funny..</text>
</texts>

Additional details

* p:delete preserves all document-properties of the document(s) appearing on its source port.

* This step cannot remove namespaces, if you try this XC0023 (pg. 37) is raised. For removing
namespaces use p:namespace-delete (pg. 101).

* Deleting an xml:base attribute does 7o/ change the base URI of the element on which it occurred.

Errors raised

Error code Description

XCe023 (pg. 217) It is a dynamic error if the selection pattern matches a wrong type of node.

XCev62 (pg. 217) It is a dynamic error if the match option matches a namespace node.

2.12 p:directory-list

List the contents of a directory.

Summary

<p:declare-step type="p:directory-list">

<output port="result" primary="true" content-types="application/xml" sequence="false"/>

<option name="path" as="xs:anyURI" required="true"/>

<option name="detailed" as="xs:boolean" required="false" select="false()"/>

<option name="exclude-filter" as="xs:string*" required="false" select="()"/>

<option name="include-filter" as="xs:string*" required="false" select="()"/>

<option name="max-depth" as="xs:string?" required="false" select="'1'"/>

<option name="override-content-types" as="array(array(xs:string))?" required="false" select="()"/>
</p:declare-step>

The p:directory-1list step produces an XML document that contains an overview of the contents of a
specified directory.
Ports:

Type Primary? |Content types Seq? Description
result output true application/xml false The resulting XML document that describes

the contents of the directory. See “The result
document” on page 39.

Options:

Description

path xs:anyURI true The path of the directory to describe the
contents of.

detailed xs:boolean false false Whether detailed information about the
directory and its contents is returned. See TBD

exclude-filter xs:string* false @) A sequence of XPath regular expression
that specifies which directories/files are
excluded. See “Including and excluding files
and directories” on page 39. See also the
Including and excluding files (pg. 42)
example.

XProc 3.1 Step Reference

Name Type Req? Default Description

include-filter xs:string* false O A sequence of XPath regular expression
that specifies which directories/files are
included. See “Including and excluding files
and directories” on page 39. See also the
Including and excluding files (pg. 42)
example.

max-depth xs:string? false 1 How deep (how many levels of subdirectories)
the directory is described. Its value must be a
string that can be cast to either a (non-negative)
integer or the word unbounded:

* A value of @ means that only information
about the given directory is returned.

e Avalue of 1 (default) returns information
about the direct contents of the given
directory.

* A numerical value greater than 1
returns information up to that level of
subdirectories.

¢ A value unbounded returns information
about all subdirectories.

See also the Changing the depth of the directory

lisiting (pg. 41) example.

override-content- |array(array false O Use this to override the content-type

types (xs:string))? determination of files. Determining the content-
type of a file happens when you ask for detailed
information (the detailed option is set to
true).

This works just like the mechanism for

the override-content-types option of
p:archive-manifest (pg 18), except

that the regular expression matching is done
against the paths as used for the matching

of the include-filter and exclude-
filter options. For more information see
“Including and excluding files and directories”
on page 39.

Description

The p:directory-1list step provides you with an overview of the contents of a directory, similar to a
Windows dir or a Unix/Linux/macOS 1s command. This often comes in handy, for instance when you
need to perform some operation on 4/ files in a directory (or a directory tree). The examples Handling all
files in a directory (A) (pg. 43) and Handling all files in a directory (B) (pg. 44) show how you could

do this.

The p:directory-1list step takes a directory path as its main input in the path option. The result port
emits a document (see “The result document” on page 39) that describes this directory by listing its
contents (files and subdirectories). What happens exactly depends on the settings of the other options. The
step has no input port(s).

The directory to describe, as specified in the path option, must exist. Otherwise, error XC0017 (pg: 45) is
raised.

XProc 3.1 Step Reference 39

Including and excluding files and directories

The include-filter and exclude-filter determine which files and directories are included/excluded in
the result. Both options are a sequence of (zero or more) XPath regular expression strings.

* Ifthe include-filter is not specified (ot the empty sequence), @/ files/ditrectoties ate included.

Otherwise, every regular expression string in the option value is matched against the relative file/directory
paths (telative to the path that was given in the path option). A match means the file/directory is
included.

e If the exclude-filter is not specified (or the empty sequence), 7o files/directoties are excluded.

Otherwise, every regular expression string in the option value is matched against the relative file/directory
paths (telative to the path that was given in the path option). A match means the file/directory is
excluded.

* A file/directory is part of the result if it is included and not excluded.

Matching the regular expressions behaves like applying the XPath matches() (https://www.w3.org/
TR/xpath-functions-31/#func-matches) function (like in matches($relative-path, $regular-
expression)).

The result document

The root element of the resulting XML document is <c:directory> (the ¢ prefix here is bound to the
http://www.w3.0rg/ns/xproc-step namespace):

<c:directory name = xs:string
xml:base = xs:anyURI
hidden? = xs:boolean
last-modified? = xs:dateTime
readable? = xs:boolean
size? = xs:integer
writable? = xs:boolean >
(<c:file> |
<c:directory> |
<c:other>)*
</c:directory>

Attribute Description
name 1 |xs:string The name of the directory (without a path in front).
xml:base 1 |xs:anyURI The URI of the directory, always ending with a slash.

e For the root <c:directory> element this will be the
absolute path of the directory described.

* For any nested <c:directory> elements, this will be the
name of the directory.

hidden ? |xs:boolean Whether this directory is hidden for the current user. See below.
last-modified ? |xs:dateTime The date and time this directory was last modified. See below.
readable ? |xs:boolean Whether this directory is readable for the current uset. See below.
size ? |xs:integer The size of the directory entry (in bytes). See below.

writable ? |xs:boolean Whether this directory is readable for the current user. See below.

Child element # ‘Description ‘
c:file * |An file in the given directory

c:directory * |A subdirectory in the given directory

c:other * |Anything in the given directory that is “special”. What is considered special is implementation
defined and therefore depends on the XProc processor used.

Every file in a directory is described using a <c:file> element:

<c:file name = xs:string
xml:base = xs:anyURI
content-type? = xs:string
hidden? = xs:boolean
last-modified? = xs:dateTime
readable? = xs:boolean
size? = xs:integer
writable? = xs:boolean />

https://www.w3.org/TR/xpath-functions-31/#func-matches
https://www.w3.org/TR/xpath-functions-31/#func-matches

XProc 3.1 Step Reference 40

Attribute # Type Description

name 1 |xs:string The name of the file (without a path in front).

xml:base 1 |xs:anyURI The name of the file (identical to the name attribute).

content-type ? |xs:string The content-type (MIME type) of this file. If this cannot be
determined, its value is application/octet-stream. See below.

hidden ? |xs:boolean Whether this file is hidden for the current user. See below.

last-modified ? |xs:dateTime The date and time this file was last modified. See below.

readable ? |xs:boolean Whether this file is readable for the current user. See below.

size ? |xs:integer The size of the file entry (in bytes). See below.

writable ? |xs:boolean Whether this file is readable for the current user. See below.

Anything else in a directory is described using the <c:other> element. This looks just like the <c:file>
element, but without a content-type attribute.

About the optional attributes on the result elements:
* If the detailed option is false (default), only the name and xml:base attributes will be there.
* If the detailed option is true, the other, optional, attributes will be present also.

What the values of the various attributes actually mean is implementation defined and therefore depends on
the XProc processor used. For most attributes there will be no surprises, but what, for instance, is the size of
a directory? It may take some experiments to get things right.

Examples

Basic usage

Assume we have a disk layout that looks like this:

-- data -- + -- xl.txt

+ -- x1.xml

+ -- subl/ -- + -- subl-x1.xml

+ -- sub2/ -- + -- sub2.tmp

+ -- sub2-x1.txt

For the examples to come we assume this data directory is in the same location as our pipeline. Simply
asking for the directory listing, using the default values for the options of p:directory-1list, is as follows:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:directory-1list path="data"/>
</p:declare-step>
Result document:
<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/"
name="data">
<c:directory xml:base="subl/" name="subl"/>
<c:file xml:base="x1.txt" name="x1.txt"/>

<c:file xml:base="x1.xml" name="x1.xml"/>
</c:directory>

When we ask for details, the following happens:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:directory-list path="data" detailed="true"/>

</p:declare-step>

XProc 3.1 Step Reference

Result document:

<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:mox="http://www.xml-project.com/morganaxproc"
xml:base="file:/../../data/"
name="data"
readable="true"
writable="true"
mox:executable="true"
hidden="false"
last-modified="2024-12-31T714:05:13.97Z"
size="0">
<c:directory xml:base="subl/"
name="subl"
readable="true"
writable="true"
mox:executable="true"
hidden="false"
last-modified="2024-12-27T11:30:00.95Z"
size="0"/>
<c:file xml:base="x1.txt"
name="x1.txt"
content-type="text/plain"
readable="true"
writable="true"
mox:executable="true"
hidden="false"
last-modified="2024-12-27T11:30:00.96Z"
size="0"/>
<c:file xml:base="x1.xml"
name="x1.xml"
content-type="application/xml"
readable="true"
writable="true"
mox:executable="true"
hidden="false"
last-modified="2025-02-05T712:05:59.74Z"
size="83"/>
</c:directory>

Changing the depth of the directory lisiting

The following examples work on the same directory structure as desctibed in Basic usage (pg. 40). Asking
for a directory description with max-depth option set to @ just gives us the main directory itself:

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:directory-list path="data" max-depth="0"/>
</p:declare-step>
Result document:
<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/"
name="data"/>

And getting the full directory structure is as follows:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:directory-list path="data" max-depth="unbounded"/>

</p:declare-step>

XProc 3.1 Step Reference 42

Result document:

<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/"
name="data">
<c:directory xml:base="subl/" name="subl">
<c:file xml:base="subl-x1.xml" name="subl-x1.xml"/>
<c:directory xml:base="sub2/" name="sub2">
<c:file xml:base="sub2-x1.txt" name="sub2-x1.txt"/>
<c:file xml:base="sub2.tmp" name="sub2.tmp"/>
</c:directory>
</c:directory>
<c:file xml:base="x1.txt" name="x1.txt"/>
<c:file xml:base="x1.xml" name="x1.xml"/>
</c:directory>

Including and excluding files

The following examples work on the same directory structure as described in Basic usage (pg. 40).
Assume we only need the text files in the directory tree: all files ending with .txt. A regular expression that
matches this is \ . txt$, so we have to pass this as the value of the include-filter option:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:directory-1list path="data" include-filter="\.txt$" max-depth="unbounded"/>

</p:declare-step>
Result document:

<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/"
name="data">
<c:directory xml:base="subl/" name="subl">
<c:directory xml:base="sub2/" name="sub2">
<c:file xml:base="sub2-x1.txt" name="sub2-x1.txt"/>
</c:directory>
</c:directory>
<c:file xml:base="x1.txt" name="x1.txt"/>
</c:directory>

Assume that we know that all files that start with an x are not interesting. We can exclude these by passing the
regular expression "X as the value of the exclude-filter option:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:directory-list path="data" include-filter="\.txt$" exclude-filter="~x" max-depth="unbounded"/>

</p:declare-step>
Result document:

<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/"
name="data">
<c:directory xml:base="subl/" name="subl">
<c:directory xml:base="sub2/" name="sub2">
<c:file xml:base="sub2-x1.txt" name="sub2-x1.txt"/>
</c:directory>
</c:directory>
</c:directory>

XProc 3.1 Step Reference 43

Finally, assume we both need the XML and text files in the directory tree, but not anything else. For this we
could do two things:

* Create a regular expression that incorporates both, and pass it as an include-filter attribute on
the <p:directory-1list> element, just like we did in the examples above: <p:directory list
path="data" include-filter="\.(xml|txt)$" max-depth="unbounded"/>

e Or we could pass a regular expression for each file type. If we do it this way we can no longer pass the
include-filter option as an attribute. We have to use a <p:with-option> child element:

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:directory-list path="data" max-depth="unbounded">
<p:with-option name="include-filter" select="('\.xml$', '\.txt$')"/>
</p:directory-list>

</p:declare-step>
Result document:

<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/"
name="data">
<c:directory xml:base="subl/" name="subl">
<c:file xml:base="subl-x1.xml" name="subl-x1.xml"/>
<c:directory xml:base="sub2/" name="sub2">
<c:file xml:base="sub2-x1.txt" name="sub2-x1.txt"/>
</c:directory>
</c:directory>
<c:file xml:base="x1.txt" name="x1.txt"/>
<c:file xml:base="x1.xml" name="x1.xml"/>
</c:directory>

Handling all files in a directory (A)

Again, the following examples work on the same directory structure as described in Basic usage (pg. 40).
Assume we need to do something with all XML documents in the data directory. Using p:directory-list
we can easily get the names of these files. However, to process them we will need to load them, and for that
its handy if we have their full absolute URIs.

There are several ways to do this. One, using the p:make-absolute-uris (pg 97) step, is shown in this
example. Another one is shown in the Handling all files in a directory (B) (pg. 44) example below.

Using the p:make-absolute-uris (pg. 97) step we can change the name attributes into full URIs:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:directory-list path="data" include-filter="\.xml$" max-depth="unbounded"/>
<p:make-absolute-uris match="@name"/>

</p:declare-step>
Result document:

<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/"
name="file:/../../data/data">
<c:directory xml:base="subl/" name="file:/../../data/subl/subl">
<c:file xml:base="subl-x1.xml" name="file:/../../data/subl/subl-x1.xml"/>
</c:directory>
<c:file xml:base="x1.xml" name="file:/../../data/x1.xml"/>
</c:directory>

XProc 3.1 Step Reference

We can now use this result to process all the XML documents. The following pipeline simply loads them
(using p:load (pg. 94)), and wraps all contents (using p:wrap-sequence (pg. 188)) in an <all-xml-
documents> element:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:directory-list path="data" include-filter="\.xml$" max-depth="unbounded"/>
<p:make-absolute-uris match="@name"/>

<p:for-each>
<p:with-input select="//c:file"/>
<p:load href="{/*/@name}"/>
</p:for-each>
<p:wrap-sequence wrapper="all-xml-documents"/>

</p:declare-step>
Result document:

<all-xml-documents>
<data>This is document subl/subl-x1.xml</data>
<data>This is document data/x1.xml</data>
</all-xml-documents>

Handling all files in a directory (B)

Another way to approach the problem in example Handling all files in a directory (A) (pg. 43) is using
the XPath base-uri() (https://www.w3.0trg/TR/xpath-functions-31/#func-base-uti) function on the
<c:file> elements. This works because all <c:directory> and <c:file> clements in the result of
p:directory-1list have an xml:base attribute. These together make the base URIs of the <c:file>
elements the URIs of the documents referenced.

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:directory-1list path="data" include-filter="\.xml$" max-depth="unbounded"/>
<p:make-absolute-uris match="@name"/>

<p:for-each>

<p:with-input select="//c:file"/>

<p:load href="{base-uri(/*)}"/>
</p:for-each>
<p:wrap-sequence wrapper="all-xml-documents"/>

</p:declare-step>
Result document:

<all-xml-documents>
<data>This is document subl/subl-x1.xml</data>
<data>This is document data/x1.xml</data>
</all-xml-documents>

Additional details

Only the base-uri property will be set. Its value will be the absolute URI of the directory described.

A relative value for the path option is resolved against the base URI of the element on which this option
is specified. In most cases this will be the static base URI of your pipeline (the path where the XProc
source containing the p:directory-1list is stored).

If some entry (file or directory) is included in the result, all directories leading up to this entry are always
included, even if they're excluded because of the include-filter and exclude-filter option settings.
This assures that the hierarchy of the result always matches the hierarchy of the filesystem.

https://www.w3.org/TR/xpath-functions-31/#func-base-uri

XProc 3.1 Step Reference 45

* Working on “normal” files and/or directoties (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditectory” and “file” may vary.

* An XProc processor may add additional, implementation-defined, attributes to the various result
elements as described in “The result document” on page 39. These attributes will always be in some,
XProc processor dependent, namespace.

Errors raised

Error code Description

XCe012 (pg. 217) It is a dynamic error if the contents of the directory path are not available to the step due to
access restrictions in the environment in which the pipeline is run.

XCo017 (pg. 217) It is a dynamic error if the absolute path does not identify a directory.

XC0090 (pg. 218) It is a dynamic error if an implementation does not support directory listing for a specified
scheme.

XC0147 (pg. 220) It is a dynamic error if the specified value is not a valid XPath regular expression.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986

(https:/ /www.tfc-editor.org/info/1fc3980) .

2.13 p:encode

Encodes a document.

Summary

<p:declare-step type="p:encode">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="application/xml" sequence="true"/>
<option name="encoding" as="xs:string" required="false" select="()"/>
<option name="serialization" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:encode step encodes the document appearing on its source port, for example with base64 encoding.
The encoded version is wrapped in a <c:data> element and appears on the result port.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference

46

Ports:

Type Primary? |Content types Description

source input true any false The source document to encode:

e If this is a binary document, its content is
encoded directly.

* Any other kind of document is serialized
first (as if written to disk, see also the
serialization option). The serialized
version is encoded.

result output true application/xml true A <c:data> element (the ¢ prefix here is bound
to the http://www.w3.0org/ns/xproc-step
namespace), containing the encoded version

of the source document. See here (https://
xproctref.org/3.1/p.cast-content-type. html#c-
data) for a more detailed description of the
<c:data> element.

Options:

‘Default Description

encoding xs:string false O The encoding the step must produce. The only
standard value currently supported is base64 (default).

Whether any other encodings are supported and
what their names (value for this option) are is
implementation-defined and therefore dependent on
the XProc processor used.

serialization map(xs:QName, |false @) This option can supply a map with serialization
item()*)? propettes (https://www.w3.org/ TR/ xslt-xquety-

serialization-31/) for serializing the document on the

source port, before encoding takes place.

If the source document has a serialization

document-property, the two sets of serialization

properties are merged (properties in the document-

property have precedence).

Example:

serialization="map{ 'indent': false()}". See

also the Effect of serialization (pg. 47) example.

Description

The p:encode can be used to encode a document. The only standard encoding currently supported is
base64. The encoded version of the source document is wrapped in a <c:data> element and appears
on the result port. A more detailed description of the <c:data> element can be found here (https://
xprocref.org/3.1/p.cast-content-type.html#c-data).

There is no p:decode step. Decoding (of <c:data> elements) is performed by the p:cast-content-type
(pg 22) step.

Examples

Basic usage
Assume we have a simple input text document that looks like this:
Hi there!

Feeding this to p:encode results in the following:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:encode/>

</p:declare-step>

https://xprocref.org/3.1/p.cast-content-type.html#c-data
https://xprocref.org/3.1/p.cast-content-type.html#c-data
https://xprocref.org/3.1/p.cast-content-type.html#c-data
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://xprocref.org/3.1/p.cast-content-type.html#c-data
https://xprocref.org/3.1/p.cast-content-type.html#c-data

XProc 3.1 Step Reference 47

Result document:

<c:data xmlns:c="http://www.w3.org/ns/xproc-step"
content-type="text/plain"
encoding="base64"
charset="UTF-8">SGkgdGhlcmUh</c:data>

Effect of serialization

When encoding an XML document, this is setialized first (as if written to disk). The result of the serialization
therefore has an effect on the outcome, as shown in the two examples below.

Source document:

<text>
<para>Hello XProc fans!</para>
</text>

Encoding with indenting:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:encode serialization="map{'indent': true()}"/>
</p:declare-step>
Result document:

<c:data xmlns:c="http://www.w3.org/ns/xproc-step"
content-type="application/xml"
encoding="base64"
charset="UTF-8">PD94bWwgdmVyc21vbj@iMS4wIiB1bmNvZG1luZz@iVVRGLTgiPz4KPHR1eHQ
+CiAgIDxwYXJIhPkh1bGxvIFhQcm9jIGZhbnMhPCOWYXIhPgo8L3R1eHQ+</c:data>

Encoding withont indenting (using the same input document as in the example above):

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:encode serialization="map{'indent': false()}"/>
</p:declare-step>
Result document:

<c:data xmlns:c="http://www.w3.org/ns/xproc-step"
content-type="application/xml"
encoding="base64"
charset="UTF-8">PD94bWwgdmVyc21vbj@iMS4wIiB1bmNvZGluZz@iVVRGLTgiPz48dGV4dD4KICA8CGFYYT5IZWxsbyBYUHIVYyBmYW5zITwvcGFy'
c:data>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

2.14 p:error

Raises an error.

Summary

<p:declare-step type="p:error">
<input port="source" primary="true" content-types="text xml" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<option name="code" as="xs:QName" required="true"/>

</p:declare-step>

The p:error step raises a (dynamic) error, using the value of the code option as the error code. The
document(s) on its source port become the error message(s).

XProc 3.1 Step Reference 48

Ports:
Type Primary? | Content Description
iTPES
source input true text true The contents/message of the ertor raised.
xml
result |output true any true This port is just there for the convenience of pipeline

authors. Nothing will ever appear on this port (since

p:error stops execution of the pipeline by raising an error).

Options:

Name Description

code Xs:QName true The code for the error raised.
Description

the p:error step raises a dynamic error, breaking the pipeline’s document flow.

An error has a code, which must be provided using the code option. An error code is a QName (a name with
an optional namespace part). This code is shown in the resulting error message. You can also use this code
for catching this specific error in a p:try/p:catch construction. Using a namespace in an error code raised
by p:error is recommended because it then cleatly distinguishes itself from errors raised by XProc itself.
The text or XML document(s) on the step’s source port become the error message(s) accompanying the
error. They will return as the contents of the c:errors/c:error element(s) in the error report document
(https:/ /spec.xproc.otg/master/head /xproc/#ett-vocab) produced by the ettor.

The p:error step also has a (primary) output port, but that is just for the convenience of the pipeline author:
nothing will ever appear on it (since the flow is broken by the generated error). It makes it easier to insert a
p:error in situations where a primary output port is required, for instance inside a p:if that tests whether
an error must be raised.

Examples

Basic usage

The following example raises an error using p:error. Please notice that we use a namespace for the error
code (which is recommended but not required).

Source document:
<result status="bad"/>

The example pipeline checks the result status. Watch out: the p:try/p:catch construction that surrounds
p:error is there for example purposes only (don’t try this at home)! It takes care of showing the resulting error
report document as the step’s result.

<p:declare-step xmlns:my="#my-application” xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:if test="/*/@status ne 'good'">
<p:try>

<p:error code="my:error">
<p:with-input>
<message>The status is not good but {/*/@status}</message>
</p:with-input>
</p:error>

<p:catch name="error-catch">
<p:identity>
<p:with-input pipe="error@error-catch"/>
</p:identity>
</p:catch>

</p:try>
</p:if>

</p:declare-step>

https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 49

The resulting error report document:

<c:errors xmlns:c="http://www.w3.org/ns/xproc-step">
<c:error code="err:XDee52"
name="!1.1.1.1.1-source-0"
type="11.1.1.1.1-source-0"
href="file:/../../error-01.xpl"
line="11"
column="32">
<message>Unable to build inline document with TVT: Unable to add free standing attribute here.</
message>
</c:error>
</c:errors>

Notice that in the example above the error message is inside a <message> clement. Usually however,
error messages are just text, strings. This can be accomplished by providing the error message on the
p:error source port as a text document:

<p:declare-step xmlns:my="#my-application" xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:if test="/*/@status ne 'good'">
<p:try>

<p:error code="my:error">
<p:with-input>
<p:inline content-type="text/plain">The status is not good but {/*/@status}</p:inline>
</p:with-input>
</p:error>

<p:catch name="error-catch">
<p:identity>
<p:with-input pipe="error@error-catch"/>
</p:identity>
</p:catch>

</p:try>
</p:if>

</p:declare-step>
The resulting error report document:

<c:errors xmlns:c="http://www.w3.org/ns/xproc-step">
<c:error code="err:XDo084"
name="11.1.1.1.1-source-0"
type="11.1.1.1.1-source-0"
href="file:/../../error-02.xpl"
line="11"
column="32">
<message>Unable to build inline text document with TVT. Free standing attributes not allowed.</
message>
</c:error>
</c:errors>

Additional details

* If more than one document appears on the source port of p:error, all source documents become
children of a single <p:error> element.

2.15 p:file-copy

Copies a file or directory.

Summary

<p:declare-step type="p:file-copy">
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="target" as="xs:anyURI" required="true"/>
<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>
<option name="overwrite" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

The p:file-copy step copies a file or a directory to a given target.

XProc 3.1 Step Reference 50

Ports:

Type Primary? |Content types Description

result output true application/xml false A <c:result> element containing the absolute
URI of the target (the ¢ prefix here is bound
to the http://www.w3.org/ns/xproc-step

namespace).
Options:
Description
href xs:anyURI |true The URI of the source file or directory to copy from.
target xs:anyURI |true The URI of the target file or directory to copy to.
fail-on-error xs:boolean |false |true Determines what happens if an error occurs during the
operation:

e If this option is true (default), an appropriate XProc
error is raised.

* If this option is false, the step returns a <c:error>
document (see here (https://spec.xproc.otg/mastet/
head/xproc/#ert-vocab) for more information) on its
result port.

If you’re copying a ditectory, please note that an error may

mean that a partial copy has already been made.

overwrite xs:boolean |[false true Determines what happens if p: file-copy needs to

overwrite an existing file:

* If this option is true (default), the existing file is
overwritten.

* If this option is false, no existing file will be changed.

Description

The p:file-copy step copies a file or a directory, as specified in the href option, to the target specified in
the target option. Any non-existent directory in the target option value will be created. The result port
emits a small XML document with only a <c:result> element containing the absolute URI of the target (the
¢ prefix here is bound to the http://www.w3.0rg/ns/xproc-step namespace).

If the target option specifies an existing directory (existing on disk), the step attempts to copy the source
file or directory into that target directory, preserving the name of the source. This means that you cannot use
p:file-copy to copy a directory to another location under a different name. See the Copying a directory
under a different name (pg 51) example on how to achieve this.

Examples

Basic usage

The following example copies a file data/x1.xml to build/x1-copied:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-copy href="data/x1.xml" target="build/x1-copied.xml"/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../build/x1-copied.xml</c:result>

https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 51

Copying a directory under a different name

If you’re copying a directory, the p:file-copy step always copies this /0 the designated target directory.
This means that you cannot copy a directory to another location under a different name. In order to achieve
this, you subsequently must rename the copied result using p: file-move (pg 60):

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:file-copy href="data/" target="build/"/>
<p:file-move href="build/data/" target="build/data-renamed/"/>

</p:declare-step>
Result document (of the p:file-move (pg. 60)):

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../build/data-renamed/</c:result>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Relative values for the href and target options are resolved against the base URI of the element on
which this option is specified. In most cases this will be the static base URI of your pipeline (the path
where the XProc source containing the p:file-copy is stored).

* Working on “normal” files and/or directories (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditrectory” and “file” may vary.

Errors raised

Error code Description

XCe050 (pg. 217) It is a dynamic error the file or directory cannot be copied to the specified location.

XC0144 (pg. 220) It is a dynamic error if an implementation does not support <p:file-copy> for a specified
scheme.

XC0145 (pg. 220) It is a dynamic error if <p:file-copy> is not available to the step due to access restrictions in
the environment in which the pipeline is run.

XC0157 (pg. 220) It is a dynamic error if the href option names a directory, but the target option names a file.

XDoo11 (pg. 221) It is a dynamic error if the resource referenced by the href option does not exist, cannot be
accessed or is not a file.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986

(https:/ /www.tfc-editor.org/info/rfc3986) .

2.16 p:file-create-tempfile

Creates a temporary file.

Summary

<p:declare-step type="p:file-create-tempfile">
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="delete-on-exit" as="xs:boolean" required="false" select="false()"/>
<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>
<option name="href" as="xs:anyURI?" required="false" select="()"/>
<option name="prefix" as="xs:string?" required="false" select="()"/>
<option name="suffix" as="xs:string?" required="false" select="()"/>

</p:declare-step>

The p:file-create-tempfile step creates a temporary file.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 52

Ports:

Type Primary? |Content types Description

result output true application/xml false A <c:result> element containing the absolute
URI of the created temporary file (the ¢ prefix
here is bound to the http://www.w3.0rg/ns/
xproc-step namespace).

Options:

Reqp? Default Description
delete-on-exit xs:boolean |false |false |Ifsetto true,an attempt will be made to automatically

delete the temporary file when the processor terminates
the pipeline. No error will be raised if this is unsuccessful.

fail-on-error xs:boolean |false true Determines what happens if an error occurs during the

operation:

* If this option is true (default), an appropriate XProc
error is raised.

e If this option is false, the step returns a <c:error>
document (sce here (https://spec.xproc.otg/mastet/
head/xproc/#err-vocab) for more information) on
its result port.

href xs:anyURI? |false O The URI of the (existing) directory where the temporary
file is created. If not specified, location of the temporary
file is implementation-defined and therefore depends

on the XProc processor used. Usually this will be the
operating system’s default location for temporary files.

prefix xs:string? |false O The prefix string for the name of the temporary file to

create.

Specifying a prefix is useful if your want the temporary
files created by your pipeline to be distinguishable from
other temporary files in the same directory.

suffix xs:string? |false O The suffix string for the name of the temporary file to
create.

Setting the suffix option must be used if you want your
temporary file to have a specific extension, like .xm1.
See also the Specifying the temporary file’s extension
(pg. 53) example.

Description

XProc is designed to process documents without having to continuously store and load these documents to/
from disk. But sometimes you do need documents to be stored on disk, for instance when some additional
process demands this. You can of course solve this by using p:store (pg. 132) with a fixed (or generated)
filename. However, if the filename is not important, or there is no obvious location for these files, or if you
do’t want these documents to survive pipeline processing, p: file-create-tempfile comes to the rescue.

The p:file-create-tempfile step creates a temporary file:
* Itis guaranteed that this file didn’t exist beforehand.

* The directory where the will be created can be specified using the href option (if you don’t, some logical,
system dependent, location for temporary files will be used).

* The main part of the filename will be generated by the step. However, you can specify a filename
suffix (in the suffix option) and prefix (in the prefix option). This is especially useful if you want
your temporary file to have a specific extension. See also the Specifying the temporary file’s extension
(pg 53) example.

* If you want the resulting temporary file to get deleted after the pipeline finishes, set the delete-on-exit
option to true. There is however no guarantee that this deletion succeeds (and you will not get notified if
it does’t).

The result port emits a small XML document with only a <c:result> element, containing the absolute

URI of the temporary file (the ¢ prefix here is bound to the http://www.w3.org/ns/xproc-step

namespace).

https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 53

Examples

Basic usage

The following example creates a temporary file in the (existing) build/ subdirectory (and deletes this again
when the pipeline has come to an end):

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-create-tempfile href="build/" delete-on-exit="true"/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../build/15286467599441611641.tmp</c:result>

Specifying the temporary file’s extension

The following example creates a temporary file with a specific .xml extension in the (existing) build/
subdirectory. In this case we don’t specify that the file must get deleted after the pipeline finishes. Because of
the explicit . xml extension, it will be easy to open and inspect the file using your XML editor, if needed.

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-create-tempfile href="build/" suffix=".xml"/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../build/12372124300445658513.xml</c:result>

Using a temporary file

Of course, just creating a temporary file is not very useful. You’ll want to write some data to it. The following
example shows you how to do this: the document appearing on the source port is written to the temporary
file. This is not very useful in itself but it shows how you can “catch” the created temporary file URI and use
this in a subsequent step.

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0" name="example-pipeline">

<p:input port="source"/>
<p:output port="result"/>

<p:file-create-tempfile href="build/" suffix=".xml"/>
<p:store href="{string(.)}">
<p:with-input pipe="source@example-pipeline"/>

</p:store>

</p:declare-step>

You might also consider catching the created temporary file URI in a variable and use it from there. For this,
add the next line directly after the p: file-create-tempfile invocation:

<p:variable name="href-tempfile-uri" select="string(.)"/>

XProc 3.1 Step Reference 54

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Relative values for the href option are resolved against the base URI of the element on which this
option is specified. In most cases this will be the static base URI of your pipeline (the path whete the
XProc source containing the p: file-create-tempfile is stored).

* Working on “normal” files and/or directories (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditrectory” and “file” may vary.

Errors raised

Error code Descipon |

XCe11e6 (pg 219) It is a dynamic error if the temporary file could not be created.

XC0138 (pg. 220) Itis a dynamic etror if an implementation does not support <p:file-create-tempfile> for
a specified scheme.

XC0139 (pg. 220) It is a dynamic error if <p:file-create-tempfile> cannot be completed due to access
restrictions in the environment in which the pipeline is run.

XDoo11 (pg. 221) It is a dynamic error if the resource referenced by the href option does not exist, cannot be
accessed or is not a file.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986

(https:/ /www.rfc-editor.org/info/1fc3986) .

2.17 p:file-delete

Deletes a file or directory.

Summary

<p:declare-step type="p:file-delete">
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>
<option name="recursive" as="xs:boolean" required="false" select="false()"/>
</p:declare-step>

The p:file-delete step deletes a file or directory.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference

Ports:

Type Primary? |Content types Description

result output true application/xml false A <c:result> element containing the
absolute URI of the file or directory to delete
(the ¢ prefix here is bound to the http://
www.w3.org/ns/xproc-step namespace).

Options:
Description
href xs:anyURI |true The URI of the file or directory to delete.
fail-on-error xs:boolean |false true Determines what happens if an error occurs during the
operation:

* If this option is true (default), an appropriate XProc
error is raised.

e If this option is false, the step returns a <c:error>
document (see here (https://spec.xproc.otg/mastet/
head/xproc/#ert-vocab) for more information) on its
result port.

If you’re deleting a directory with the recursive option set

to true, please note that an error may mean that a partial

delete has already been made.

recursive xs:boolean |false false |When deleting a directory, setting this option to true means
that the contents of the directory (any contained files and/
ot sub-directoties) will also be deleted.

When this option is set to false (default), deleting a
directory is possible only when the directory is empty.

Description

The p:file-delete step deletes a file or directory specified in the href option. The result port emits a
small XML document with only a <c:result> element, containing the absolute URI of the deleted file or
directory (the ¢ prefix here is bound to the http://www.w3.0rg/ns/xproc-step namespace).

Be aware that whether or not the file or directory exists, the step will a/vays return a <c:result> element.
It makes no distinction between “deleted” and “didn’t exist in the first place”. Some XProc processors add
additional attributes to the <c:result> element (in a separate, processor dependent, namespace) to tell you
what really happened.

If you're deleting a directory, you’ll probably want the recursive option set to true. This ensures that all
containing files an/or subditrectoties will also be deleted (tecutsively). Deleting a directory with recursive
set to false (default) will succeed only when the directory is empty.

Examples

Basic usage
The following example deletes an (existing) file data/x.xml:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-delete href="data/x.xml"/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../data/x.xml</c:result>

https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 56

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Relative values for the href option are resolved against the base URI of the element on which this
option is specified. In most cases this will be the static base URI of your pipeline (the path whete the
XProc source containing the p: file-delete is stored).

* Working on “normal” files and/or directories (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditrectory” and “file” may vary.

Errors raised

Error code Descpon |

XC0113 (pg. 219) It is a dynamic error if an attempt is made to delete a non-empty directory and the recursive
option was set to false.

XC0142 (pg. 220) It is a dynamic error if an implementation does not support <p:file-delete> for a specified
scheme.
XC0143 (pg. 220) It is a dynamic error if <p:file-delete> is not available to the step due to access restrictions

in the environment in which the pipeline is run.

XDoo11 (pg. 221) It is a dynamic error if the resource referenced by the href option does not exist, cannot be
accessed or is not a file.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.tfc-editor.org/info/tfc3980) .

2.18 p:file-info

Returns information about a file or directory.

Summary

<p:declare-step type="p:file-info">

<output port="result" primary="true" content-types="application/xml" sequence="false"/>

<option name="href" as="xs:anyURI" required="true"/>

<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>

<option name="override-content-types" as="array(array(xs:string))?" required="false" select="()"/>
</p:declare-step>

The p:file-info step returns information about a file or directory (or other file system object).

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 57

Ports:

Type Primary? |Content types Description

result output true application/xml false A small XML document, describing the file or
directory referenced by the href option. See
“The result document” on page 57.

Options:

Default Description
href Xs:anyURI true The URI of the file or directory to describe.
fail-on-error xs:boolean false true Determines what happens if an error occurs

during the operation:
* If this option is true (default), an
appropriate XProc error is raised.

* If this option is false, the step returns a
<c:error> document (see hete (https://
spec.xproc.otg/master/head/xproc/
#err-vocab) for more information) on its
result port.

override-content- |array(array false @) Use this to override the content-type
types (xs:string))? determination of files.

This works just like the mechanism for

the override-content-types option of
p:archive-manifest (pg. 18), except that

the regular expression matching is done against
the absolute URI of the file.

Description

The p:file-info step returns information about a file or directory (or other file system object) as a small
XML document on its result port. What will be returned is dependent on the type of file system object, see
“The result document” on page 57.

The result document

The result document describing a file or directory consists of either a <c:file> or <c:directory> element
(the c prefix here is bound to the http://www.w3.org/ns/xproc-step namespace). These elements and
their attributes are the same as returned by p:directory-1ist (pg 37) for such a file system object

(with the detailed option set to true).

If the href option references any other system object (for instance, on Unix, a device), the result is
implementation-defined and therefore depends on the XProc processor used.

Examples

Basic usage

The following example returns information about the data/ directory
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-info href="data/"/>

</p:declare-step>

https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 58

Result document:

<c:directory xmlns:c="http://www.w3.org/ns/xproc-step"

xml:base="file:/../../data/"
name="data"
readable="true"
writable="true"
hidden="false"
last-modified="2024-12-31T714:05:13.012"
size="0"/>

Notice that the result has an xml:base attribute with the absolute URI of the object described. This is

attribute is not mandatory, but you can very probably rely on it being there.
Describing a file looks like this:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-info href="data/x.xml"/>
</p:declare-step>
Result document:

<c:file xmlns:c="http://www.w3.org/ns/xproc-step"
xml:base="file:/../../data/x.xml"
name="x.xml"
content-type="application/xml"
readable="true"
writable="true"
hidden="false"
last-modified="2025-02-05T712:05:59.36Z"
size="88"/>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Relative values for the href option are resolved against the base URI of the element on which this
option is specified. In most cases this will be the static base URI of your pipeline (the path where the
XProc source containing the p:file-info is stored).

* Working on “normal” files and/or directoties (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditectory” and “file” may vary.

Errors raised

Error code Desctiption ‘

XC0134 (pg. 219) It is a dynamic error if an implementation does not support <p:file-info> for a specified
scheme.

XCo135 (pg 219) It is a dynamic error if <p:file-info> is not available to the step due to access restrictions in
the environment in which the pipeline is run.

XDoo11 (pg. 221) It is a dynamic error if the resource referenced by the href option does not exist, cannot be
accessed or is not a file.

XDoo64 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986

(https:/ /www.rfc-editor.org/info/1fc3986) .

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 59

2.19 p:file-mkdir

Creates a directory.

Summary

<p:declare-step type="p:file-mkdir">
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

The p:file-mkdir step creates the directory specified in the href option.
Ports:

Primary? |Content types Seq? Description

result output true application/xml false A <c:result> element containing the absolute
URI of the created directory (the ¢ prefix here is
bound to the http://www.w3.0org/ns/xproc-
step namespace).

Options:

Name Type Reqp Default Description

href xs:anyURI |true The URI of the ditectory to create.

fail-on-error xs:boolean |false |true Determines what happens if an error occurs during the

OPCI‘B.UOHZ

e If this option is true (default), an appropriate XProc
error is raised.

e If this option is false, the step returns a <c:error>
document (see here (https://spec.xproc.otg/mastet/
head/xproc/#ert-vocab) for more information) on its
result port.

Description

The p:file-mkdir step creates the directory specified in the href option . The result port emits a small
XML document with only a <c:result> element, containing the absolute URI of the created directory (the ¢
prefix here is bound to the http://www.w3.0org/ns/xproc-step namespace).

Any non-existent directories leading up to the final directory to create are created also.

Examples

Basic usage

The following example creates a build directory:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-mkdir href="build"/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../build</c:result>

https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 60

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Relative values for the href option are resolved against the base URI of the element on which this
option is specified. In most cases this will be the static base URI of your pipeline (the path whete the
XProc source containing the p:file-mkdir is stored).

* Working on “normal” files and/or directories (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditrectory” and “file” may vary.

Errors raised

Error code Description

XC0114 (pg. 219) It is a dynamic error if the directory referenced by the href option cannot be created.

XCe14e (pg. 220) It is a dynamic error if an implementation does not support <p:file-mkdir> for a specified
scheme.

XC0141 (pg. 220) It is a dynamic error if <p:file-mkdir> not available to the step due to access restrictions in
the environment in which the pipeline is run.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.tfc-editor.org/info/1fc3980) .

2.20 p:file-move

Moves or renames a file or directory.

Summary

<p:declare-step type="p:file-move">
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="target" as="xs:anyURI" required="true"/>
<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

The p:file-move step moves (or renames) a file or directory to a different location (or name).
Ports:

Primary? |Content types ? Description

result output true application/xml false A <c:result> element containing the absolute
URI of the target (the ¢ prefix here is bound
to the http://www.w3.0org/ns/xproc-step

namespace).
Options:
Description
href xs:anyURI [true The URI of the source file or directory to move (or
rename).
target xs:anyURI true The URI of the target file or directory to move to.
fail-on-error xs:boolean |false |true Determines what happens if an error occurs during the
operation:

e If this option is true (default), an appropriate XProc
error is raised.

* If this option is false, the step returns a <c:error>
document (see here (https://spec.xproc.otg/mastet/
head/xproc/#ert-vocab) for more information) on its
result port.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 61

Description

The p:file-move step attempts to move (or rename) the file or directory specified in the href option to
the location specified in the target option. The result port emits a small XML document with only a
<c:result> element containing the absolute URI of the target (the ¢ prefix here is bound to the http://
www.w3.org/ns/xproc-step namespace).

The inspiration for this step comes from the Unix mv command. If you’re not used to it, it may come as a
surprise that zoving something can also mean renaming it:

* DMoving file:///a/b/c.xml to file:///a/b2/c.xml moves the file to the b2 directory. See also the
Basic usage (pg. 61) example.

* Butmoving file:///a/b/c.xml to file:///a/b/c2.xml renames the file. See also the Renaming a file
(pg 61) example.

An example of renaming a directory can be found in the example Copying a directory under a different
name (pg. 51) in step p:file-copy (pg 49).

If you’re moving into another directory, this directory must exist. A target must not exist.

Examples

Basic usage

The following example moves a file data/x1.xml to build/x1-copied.xml:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-move href="data/x1.xml" target="build/x1-copied.xml"/>
</p:declare-step>
Result document:
<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../build/x1-copied.xml</c:result>

Please note that the target build/ directory must exist, without an existing x1-copied.xml file.

Renaming a file

The following example renames an existing file build/x1.xml to build/x2.xml:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-move href="build/x1.xml" target="build/x2.xml"/>

</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../build/x2.xml</c:result>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Relative values for the href and target options atre resolved against the base URI of the element on
which this option is specified. In most cases this will be the static base URI of your pipeline (the path
where the XProc source containing the p:file-move is stored).

* Working on “normal” files and/or directoties (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditrectory” and “file” may vary.

XProc 3.1 Step Reference 62

Errors raised

Error code Description

XCe050 (pg. 217) It is a dynamic error the file or directory cannot be copied to the specified location.

XCo115 (pg. 219) It is a dynamic error if the resoutce referenced by the target option is an existing file or
other file system object.

XC0148 (pg. 220) It is a dynamic error if an implementation does not support <p:file-move> for a specified
scheme.

XC0149 (pg. 220) It is a dynamic error if <p:file-move> is not available to the step due to access restrictions in
the environment in which the pipeline is run.

XC0158 (pg. 220) It is a dynamic error if the href option names a directory, but the target option names a file.

XDoo11 (pg. 221) It is a dynamic error if the resoutce referenced by the href option does not exist, cannot be

accessed or is not a file.

XDo064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.tfc-editor.org/info/tfc3980) .

2.21 p:file-touch

Changes the modification timestamp of a file.

Summary

<p:declare-step type="p:file-touch">
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>
<option name="timestamp" as="xs:dateTime?" required="false" select="()"/>
</p:declare-step>

The p:file-touch step changes the modification timestamp of the file specified in the href option.
Ports:

Primary? |Content types Seq? Description

result output true application/xml false A <c:result> element containing the absolute
URI of the modified file (the c prefix here is
bound to the http://www.w3.org/ns/xproc-
step namespace).

Options:
Default Description
href xs :anyURI true The URI of the file to change the modification
timestamp of.
fail-on-error xs:boolean false |true Determines what happens if an error occurs during the
operation:

e If this option is true (default), an appropriate
XProc etrot is raised.
¢ If this option is false, the step returns a
<c:error> document (see here (https://
spec.xproc.org/master/head/xproc/#ertr-vocab)
for more information) on its result port.
timestamp xs:dateTime? false @) If set, the file’s modification timestamp is to this value. If
absent or empty, the current system date/time is used.

Description

The p:file-touch step changes the modification timestamp of the file specified in the href option. The
result port emits a small XML document with only a <c:result> element, containing the absolute URI of
the changed file (the c prefix here is bound to the http://www.w3.org/ns/xproc-step namespace).

If the file specified by the href option doesn’t exist, an empty file will be created at the given location.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://spec.xproc.org/master/head/xproc/#err-vocab
https://spec.xproc.org/master/head/xproc/#err-vocab

XProc 3.1 Step Reference 63

Examples

Basic usage

The following example changes the modification date of data/x.xml the current system date and time:
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:file-touch href="data/x.xml"/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../data/x.xml</c:result>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Relative values for the href option are resolved against the base URI of the element on which this
option is specified. In most cases this will be the static base URI of your pipeline (the path where the
XProc source containing the p:file-touch is stored).

* Working on “normal” files and/or directories (on disk, URI scheme file://) is always supported.
Whether any other types are supported is implementation-defined, and therefore depends on the XProc
processor used. For this, also the interpretation/definition of what is a “ditectory” and “file” may vary.

Errors raised

Error code Description

XCe136 (pg. 219) It is a dynamic error if an implementation does not support <p:file-touch> for a specified
scheme.

XC0137 (pg: 219) It is a dynamic error if <p:file-touch> cannot be completed due to access restrictions in the
environment in which the pipeline is run.

XDoo11 (pg. 221) It is a dynamic error if the resource referenced by the href option does not exist, cannot be
accessed or is not a file.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986

(https:/ /www.rfc-editor.org/info/1fc3986) .

2.22 pfilter

Selects parts of a document.

Summary

<p:declare-step type="p:filter">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="text xml html" sequence="true"/>
<option name="select" as="xs:string" required="true"/>

</p:declare-step>

The p:filter step selects parts of the source document based on a (possibly dynamically constructed)
XPath select expression.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference

64

Ports:
Type Primary? |Content |Seq? Description
iTPES
source |input true xml false |The source document to select the parts from.
html
result |output true text true The selected parts, as separate documents.
xml
html
Options:
Req? Description
select xs:string true The XPath expression that selects the parts.
(XPath
expression)
Description

The p:filter step takes the XPath select expression in its select option, and with this select parts of the
document appearing on the source port. The resulting document(s) (which might be zero, one or more)
appear on the step’s result port.

This step behaves just like adding a select attribute to an input port <p:with-input> element. What the
p:filter step adds is the ability to construct the XPath expression dynamically. See Using a dynamic select
expression (pg. 65) for an example of this.

Examples

Basic usage

The following example turns the single source document into a sequence of documents with information
about bolts and pipes only.

<parts units="mm">
<screw diameter="4"/>
<bolt length="35"/>
<pipe diameter="4"/>
</parts>
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" sequence="true"/>

<p:filter select="/parts/(bolt | pipe)"/>
</p:declare-step>
Result documents:
<bolt length="35"/>
<pipe diameter="4"/>

Since the XPath expression for the select option is not dynamic, you don’t actually need the p: filter
step for this. The exact same result is achieved using a select attribute on a <p:with-input> element. For
instance like below, using the p:identity (pg 78) step:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" sequence="true"/>

<p:identity>
<p:with-input select="/parts/(bolt | pipe)"/>
</p:identity>

</p:declare-step>

XProc 3.1 Step Reference 65

Using a dynamic select expression

Assume you are only interested in parts with a certain diameter. This diameter is passed to the pipeline
using an option (in the example: required-diameter). The following pipeline dynamically constructs an
XPath expression for this in the p:filter step select option. The input is the same as for the Basic usage
(pg 64) example.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" xmlns:xs="http://www.w3.0rg/2001/
XMLSchema" version="3.0" exclude-inline-prefixes="#all">

<p:input port="source"/>
<p:output port="result" sequence="true"/>

<p:option name="required-diameter" as="xs:integer" select="4"/>
<p:filter select="/parts/*[xs:integer(@diameter) eq {$required-diameter}]"/>

</p:declare-step>
Result documents:
<screw diameter="4"/>
<pipe diameter="4"/>
Remark: The exclude-inline-prefixes="#all" attribute on the pipeline root element is only there

to prevent the xs namespace declaration showing up on the output documents. A superfluous namespace
declaration doesn’t matter but is unnecessary and looks sloppy.

Additional details

* No document-properties from the source document survive.

* The base-uri document-property of the documents appearing on the result port are the same as the
base URI of their root element in the source document.

2.23 p:hash

Computes a hash code for a value.

Summary

<p:declare-step type="p:hash">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="text xml html" sequence="false"/>
<option name="algorithm" as="xs:QName" required="true"/>
<option name="value" as="xs:string" required="true"/>
<option name="match" as="xs:string" required="false" select="'/*/node()"'"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="version" as="xs:string?" required="false" select="()"/>
</p:declare-step>

The p:hash step generates a hash code for some value and injects this into the document appearing on the
source port.

XProc 3.1 Step Reference 66

Ports:
Type Primary? |Content |Seq? Description
iTPES
source |input true xml false |The source document to record the computed hash code 7.
html
result |output true text false |Result document, derived from the source document,
xml intended to contain the hash code. See the match option
html and the description below.
Options:
Description
algorithm xs:QName true The hash computation algorithm to use. See the
description below.
value xs:string true The string value to calculate the hash code from.
match xs:string false /*/node() |An XSLT selection pattern that tells p:hash where to
(XSLT selection insert the hash code in the source document. All node(s)
pattern) matched are replaced with the computed hash code (the

nodes themselves, not just their contents).

If this option matches an attribute, the value of the
attribute is changed.

If this option matches the document-node /, the entire
document is replaced with the computed hash code. The
result will be a text document.

parameters map(xs:QName, false @) Parameters controlling the hash code computation.
item()*)? Keys, values and their meaning are dependent on the
XProc processor used.

version xs:string? false O Specifies the version of the hash computation algorithm
used. If not specified, a default version is used, which
depends on the value of the algorithm option. See the
description below.

Description

A hash code in the digital world is a, relatively simple, value computed from some, possibly lengthy, input
data. The same input data always results in the same hash code. Hash codes are also called hash values, (hash)
digests, (digital) fingerprints, or simply hashes. Hash codes are used for various purposes, see for instance
Wikipedia (https://en.wikipedia.org/wiki/Hash_function).

The p:hash step computes the hash code of the string value of the value option and inserts this into the
document appearing on the source port. The result appears on the result port.

The algorithm used for computing the hash code nust be specified using the algorithm option. There are

3 predefined values, that must be supported by all XProc processots:

algorithm Default

Algorithm used

option value version

crc Cyclic Redundancy Check (https://en.wikipedia.org/wiki/Cyclic_redundancy_check)
md 5 Message-digest (https://en.wikipedia.org/wiki/MDS5)
sha 1 Secure Hash Algorithm (https://en.wikipedia.org/wiki/SHA-1)

You can specify the algorithm version using the version option. If you don’t specify this option and use one
of the predefined algorithm option values, the default version from the table above is used.

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1

XProc 3.1 Step Reference 67

Examples

Basic usage

The following example illustrates what happens when we compute a hash value and use the default value for
the match option (/*/node()): all child nodes of the root element (in this example just the <hash> element)
are replaced with the computed hash value.

Source document:

<hash-value>
<hash>Will be replaced by the hash value!</hash>
</hash-value>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:hash algorithm="crc" value="Hi there!"/>
</p:declare-step>
Result document:
<hash-value>b5c57055b5c57055b5c57055</hash-value>

The following example shows the different values computed using the different standard algorithms. These
are placed in attribute values.

Source document:
<hash-values crc="" md="" sha=""/>
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:hash algorithm="crc" value="Hi there!" match="/*/@crc"/>
<p:hash algorithm="md" value="Hi there!" match="/*/@md"/>
<p:hash algorithm="sha" value="Hi there!" match="/*/@sha"/>
</p:declare-step>
Result document:
<hash-values crc="b5c57055"

md="396199333edbf40ad43e62a1c1397793"
sha="95e2b07e12754e52c37cfd485544d4f444597bff" />

Hash code as text
If the match option matches the document-node /, the resulting document will be a text document
containing the computed hash code only. Notice that in this case the input document doesn’t matter.
Source document:

<anything/>
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:hash algorithm="crc" value="Hi there!" match="/"/>
</p:declare-step>
Result text document:

b5c57055

XProc 3.1 Step Reference 68

Additional details

* p:hash preserves all document-properties of the document(s) appearing on its source port.
The exception is when the match option matches the document-node /. In that case the resulting
document will be of type text, the content-type document-property will become text/plain and a
serialization document-property is removed. Any other document-property is preserved.

* Ifan XProc processor supports any other algorithm, its code (as supplied to the algorithm option) will
be in a namespace.

* If the match option matches an attribute called xml:base, the base URI of this attribute’s parent element
is amended accordingly. This is a side-effect of changing an attribute with a pre-defined meaning (and in
this case probably never useful).

Errors raised

Error code Description

XCe036 (pg. 217) It is a dynamic error if the requested hash algorithm is not one that the processor understands
ot if the value or parameters are not appropriate for that algorithm.

2.24 p:http-request

Interact using HT'TP (or related protocols).

Summary

<p:declare-step type="p:http-request">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<output port="report" primary="false" content-types="application/json" sequence="true"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="assert" as="xs:string" required="false" select=""'.?status-code 1t 400'"/>
<option name="auth" as="map(xs:string, item()+)?" required="false" select="()"/>
<option name="headers" as="map(xs:string, xs:string)?" required="false" select="()"/>
<option name="method" as="xs:string?" required="false" select="'GET'"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="serialization" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:http-request step allows pipelines to interact with resources (for instance websites) over HT'TP or
related protocols.

Ports:
Content types I Description
source input true any true Document(s) used in constructing the request
body.

By default, source documents are used for
HTTP methods that require a body (for
instance POST) only. If the HTTP method
does not specify a body (for instance GET),
any documents appearing on the source port
are ignored. You can control this behaviour
with the send-body-anyway parameter (see
“Parameters” on page 72).

result output true any true The request result document(s). See “The
response result and report” on page 73.

report output false application/json true A map containing information about the
response. See “The response result and report”
on page 73.

XProc 3.1 Step Reference 69

Options:
Default Description
href xs:anyURI true The URI to use for the request.
assert xs:string false .?status-code |Any request can fail, but what exactly
1t 400 failure is depends on the expectations of

the receiver. This option takes an XPath
expression that can inspect the request
results. If the result of this expression
(executed after a response is received) is
false, dynamic error XC0126 (pg. 78)
is raised. See “Asserting the request status”
on page 74
auth map(xs:string, false O Information for the authentication of the
item()+)? request (in other words: about “logging
in”). See “Request authentication” on
page 71

headers map(xs:string, false O A map containing the request headers.
xs:string)? Each map key is used as a header name and

the value associated is used as the header

value.

There are some special rules regarding the

request headers, see “Specifying request

headers” on page 70.

Request headers can influence the

construction of the request. See “Usage of

request headers” on page 71.

method xs:string? false GET The HTTP request method to use for the

request. Its value is converted to upper-

case.

Any implementations must support the
HTTP methods GET (default), POST, PUT,
DELETE, and HEAD. Whether any other
methods are supported is implementation-
defined and therefore dependent on the
XProc processor used.
parameters map (xs :QName, false O A map with parameters for fine-tuning
item()*)? the construction of the request and/or
the handling of the server response. See
“Parameters” on page 72.

serialization map (xs :QName, false O Before the document(s) on the source
item()*)? port are used, they are first serialized
(as if written to disk). This option can
supply a map with serialization properties
(https:/ /www.w3.otg/ TR/xslt-xquery-
serialization-31/), controlling this
serialization.
If the source document has a
serialization document-property,
the two sets of serialization properties
are merged (properties in the document-
property have precedence).

Description

The p:http-request allows you to send requests to some server and receive their response. You could use
this, for instance, to access REST or other services on the web. Another use case is to have your pipeline
play “web browset”: get the contents of a web page and interpret this or fill in some page with a form in the
background. Although the step is generic, it will probably be used most (exclusively?) using the HTTP(S)
protocol, so we’ll concentrate on this.

https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/

XProc 3.1 Step Reference 70

The HTTP(S) protocol is rather complex and, to support this, p:http-request is also complex. As a
result of this, the description of p:http-request is long and may appear intimidating to users who are not
familiar with the finer details of the HTTP(S) protocol. Luckily, simple interactions, like just requesting a
single web page, ate easy (see Basic usage (pg. 75)) Let’s take it step by step (if there are parts you don't
understand, chances are you don't need them). The HTTP(S) protocol itself is not explained, if you need
more information about this, a good place to start would be on Wikipedia (https://en.wikipedia.otg/wiki/
HTTP).

1. The p:http-request step first constructs a request:

* An HTTP(S) request is always to some URI (like https://xprocref.org/). You must specify this
URI using the mandatory href option.

* An HTTP(S) request has a method. Usual values are GET, POST, PUT, DELETE, and HEAD. You can
specify this using the method option. Its default value is GET.

* An HTTP(S) request has request headers: name/value pairs that contain additional information
for the server. The main source for specifying request headers is the headers option. Some special
handling applies, see “Specifying request headers” on page 70.

* Once the request headers are known, some of this information is used by p:http-request for
additional purposes, like determining the transfer encoding. See “Usage of request headers” on
page 71 for more information.

* Any documents that must accompany the request can be supplied on the source port.

* Some interactions require authorization (“logging in”). This is usually specified with the auth option.
See “Request authentication” on page 71 for more information.

e Itis possible to construct multipart request: requests where multiple documents are sent at once. See
“Multipart requests” on page 74 for more information.

* Further fine-tuning of the request is done using parameters specified in the parameters option. See
“Parameters” on page 72 for more information.

2. The request is sent to the server and p:http-request waits for a response. How long the step will wait
before giving up can be specified using parameters specified in the parameters option. See “Parameters”
on page 72 for more information.

3. A response is received an interpreted:

* Whether a response is considered successful can be specified using the assert option. If not,
error XCO126 (pg. 78) is raised. See “Asserting the request status” on page 74 for more
information.

e Further fine-tuning of the interpretation of the response is done using parameters specified in the
parameters option. See “Parameters” on page 72 for more information.

* Any documents contained in the response appear on the result port.

* Additional information about the response (its response headers, status code, etc.) appears on the
report port, as a map. See “The response result and report” on page 73 for more information.

Specifying request headers

An HTTP request has reguest headers: name/value pairs containing additional information for the server. See
for instance Wikipedia (https://en.wikipedia.otg/wiki/List_of HTTP_header_fields) for an overview.

The main source for p:http-request for constructing HT'TP request headers is its headers option (see
Viewing the request headers (pg. 75)).

https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/HTTP
https://xprocref.org/
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

XProc 3.1 Step Reference 71

If a single document appears on the source port and we’re 7of constructing a multipart message, special rules

apply:

e If the (single) document appearing on the source port:

e isan XML, HTML or text document,

* andhas a serialization document-property,

* andthis serialization document-property has an entry called encoding,

a charset is appended to the created content-type header of the HTTP request (for more
information about this charset parametet, see for instance here (https://www.w3.org/International/
articles/http-charset/index)).

* Any document-properties of the (single) document appearing on the source port that are in the
http://www.w3.0rg/ns/xproc-http namespace will be added as request header, using their local
name (their name without namespace) as the request header name.

For a request parameter specified both in a document-property and in the map provided to the headers
option, the one in the headers option takes precedence. This comparison is case-zzsensitive.

When constructing a multipart message, not only the request itself but also its separate documents can have

request headers. For more information on how this can be specified see “Multipart requests” on page 74.

Usage of request headers

Once the request headers are constructed (see “Specifying request headers” on page 70), some of these
are used for additional purposes:

* If the value of the content-type request header starts with multipart/, a multipart request is
constructed. (regardless of the number of documents appearing on the source port). See “Multipart
requests” on page 74.

¢ TFor non multipart messages, it is possible to override the media type (content-type document-
property) of the body document. If a single document appears on the source port, we’re not
constructing a multipart message and a content-type request header is specified, the value of the
content-type request header overrides the value of the content-type document-property.

* Ifatransfer-encoding request header is present, the request is sent using that particular
encoding (for more information about transfer encodings see here (https://www.tfc-editor.org/rfc/
rfc9112#section-6.1)). Examples of values are chunked, compress or gzip.

* How authorization (“logging in”) is done, is specified using the authorization request header.
However, the p:http-request step also has an auth option for specifying this (see “Request
authentication” on page 71). If this option is specified, the authorization request header, if
present, is ignored. Instead, the value of the authorization request header is determined exclusively by
the value of the auth option.

Request authentication

Information about the authotization of a request (“logging in”) is sent to the server with the authorization
request header. Experienced users could construct this request header themselves and add it to the step
headers option (or use a document-property). However, in most cases, it is easier to pass the authorization
information using the auth option and have p:http-request construct the authorization request header
for you. If you use the auth option, any authorization request header passed in some other way is ignored.
The auth option contains the credentials (username, password, etc.) of the client and specifies what

authentication method is used. It must be a map with string (xs : string) type keys. The following standard
keys are defined:

Value data type Description

username xs:string The username for the request.
password xs:string The password associated with the username.
auth-method xs:string Specifies the authentication method to use. Standard values are Basic

or Digest (see here (https://www.rfc-editor.org/info/tfc2617) for
further information). Whether other authotization methods are
supported and how to specify these is implementation-defined and
therefore dependent on the XProc processor used.

https://www.w3.org/International/articles/http-charset/index
https://www.w3.org/International/articles/http-charset/index
https://www.rfc-editor.org/rfc/rfc9112#section-6.1
https://www.rfc-editor.org/rfc/rfc9112#section-6.1
https://www.rfc-editor.org/info/rfc2617

XProc 3.1 Step Reference 72

Value data type Description

send-authorization xs:boolean This controls the “authorization challenge”:

* If this key is absent or its value is not true, a first request is sent
withont authorization information. If the server subsequently
requests it, the request is resent with authorization information.

e If this key’s value is true, the first request immediately contains
the authorization information.

If an authorization fails, the request is not retried.

Any other key/value pairs for the auth option map are implementation-defined and therefore dependent on
the XProc processor used.

Parameters

The parameters option provides information for fine tuning the construction of the request and/or
handling the response. It must be a map with string (xs : string) type keys. The following standard keys are
defined:

Value data type b

override-content-type xs:string The XProc processor must know how to interpret the body of a

server response, its data type. Normally this is done by looking at
the content-type response header. If this, for instance, is set to
application/xml, the response body is interpreted as an XML
document. Of course this must succeed, if not, error XC0030

(pg. 78) is raised.

If you specify an override-content-type parameter, its value is
used instead of that in the content-type response header.

The information about the content-type response header that
appears on the report port (see “The response result and report” on
page 73) is not changed and still reflects the actual value received
from the server.

http-version xs:string Specifies the HTTP version to use for the request. Its default value
is implementation-defined and therefore depends on the XProc
processor used. Most probably it will be 1.1.

accept-multipart xs:boolean If this parameter is present and has the value false, any multipart
response will result in raising error XC@125 (pg. 78). You can use
this to prevent unexpected multipart responses wreak havoc in your

pipeline.
override-content- xs:string The XProc processor must know how the encoding of a server
encoding response (for instance: utf-8). Normally this is done by looking

at the content-encoding response header. If you specify an
override-content-encoding parameter, its value is used instead of
that in the content-encoding response header.

The information about the content-encoding response header that
appears on the report port (see “The response result and report” on
page 73) is not changed and still reflects the actual value received
from the server.

permit-expired-ssl- Xs:boolean If this parameter is present and has the value true, p:http-request

certificate does not reject a response where the server provides an expired SSL
certificate.

permit-untrusted-ssl- xs:boolean If this parameter is present and has the value true, p:http-request

certificate does not reject a response where the server provides an SSL certificate

which is not trusted, for example, because the certificate authority
(CA) is unknown.

XProc 3.1 Step Reference

Value data type

Description

follow-redirect

xs:integer

Sometimes a server responds with a redirect, meaning something
like “please repeat the request to this different URI”. The follow-
redirect parameter tells the XProc processor what to do when a
redirect is received:

e Ifits value is @, redirects are not followed.

e Ifits value is -1, redirects are followed indefinitely.

e Ifits value is positive, at most this number of subsequent redirects
are followed.

The default behaviour, when the follow-redirect parameter is not
present, is implementation-defined and therefore dependent on the
XProc processor used.

timeout

Xs:integer

Specifies the number of seconds to wait for a response. If no
response is received after approximately this number of seconds, the
request is terminated and HTTP status 408 is assumed.

fail-on-timeout

xs:boolean

Sometimes a request results in a timeout. This can either happen by
receiving a response with HTTP status 408 or because the number of
seconds specified in the timeout parameter is exceeded. If a fail-
on-timeout parameter is present and has the value true, this will
result in raising error XCOO78 (pg; 78).

This might be confusing, because XProc also has a [p: Jtimeout
attribute, useable on all steps, that tells the XProc processor how long
a step invocation is allowed to take (also specified in seconds). What
happens depends on whatever comes first:

* If the number of seconds specified in the [p: Jtimeout attribute
is exceeded, error XDOO53 is raised (a generic timeout errof).

Be careful when you want to use this: whether a processor
supports timeouts using the [p: Jtimeout attribute, and if it
does, how precisely and precisely how the execution time of
a step is measured, is implementation-defined and therefore
dependent on the XProc processor used.

* If fail-on-timeout is true and a timeout happens, error
XC0078 (pg. 78) is raised.

status-only

Xs:boolean

If this parameter is present and its value is true, it indicates that the
pipeline author is interested in the response code only. The result
port will not emit anything. The map on the report port will return
an empty map as value of its headers entry.

suppress-cookies

xs:boolean

If this parameter is present and its value is true, no cookies are sent
with the request.

send-body-anyway

Xs:boolean

By default, whether a body is sent with the request depends on the
HTTP method used (the value of the method option). For instance,
the GET method does not specify a body. When the GET method is
used, by default any document(s) on the source port are ignored.
When the send-body-anyway parameter is present and its value is
true, a request body will always be constructed, even if the HTTP
method used does not specify this.

Any other key/value paits for the parameters option map are implementation-defined and therefore
dependent on the XProc processor used.

The response result and report

When an answer is received from the server, document(s) in the response body will appear as document(s)
on the result port. Each document will be parsed according to its content-type. You can override this
behaviour using the override-content-type parameter (see “Parameters” on page 72).

In case of a multipart response, each part will become a separate document appearing on the result port.

Any response headers associated with a specific part are added to the document-properties of the resulting

document.

XProc 3.1 Step Reference 74

The report port always teturns a map with the following keys/entries:

Key Value data type Description

status-code xs:integer The HTTP status code for the request, for instance 200 (success) or 404
(failure).

base-uri xs:anyURI The URI of the request.
In case of HTTP redirection, this value may be different from the
original request URL

headers map(xs:string, The HTTP headers returned for the request. Header names are in lower-

xs:string) case. The map may be empty.

Asserting the request status

Any request can fail, but what exactly failure is depends on the expectations of the receiver. The assert
option of p:http-request takes an XPath expression that inspects the request results:

* It must contain a valid (boolean) XPath expression.

* This expression will be executed when a response is received.

* The context item when executing the expression is the map that also appears on the report port (see
“The response result and report” on page 73).

* If the expression evaluates to false, the request is considered failed and error XC0126 (pg; 78) is
raised.

* If the expression evaluates to true, the request is considered successful. No error is raised.

The default value for the assert option is . ?status-code 1t 400. Since the context item is the map on
the report port, the dot operator . here refers to this map. The . ?status-code part is one of the ways
to access a map entry (another way to write this is . (" status-code")). The referred map entry contains
the received (integer) HTTP status code. According to its default interpretation, when less than 400, the
response is considered a success. If it’s greater than or equal to 4080, it is considered a failure and error
XC0126 (pg; 78) is raised.

Multipart requests

Multipart requests combine one or more sets of data into a single HT'TP request. You use this for file uploads

and/or transferring data of several types in one go. For instance, a web page that allows you to upload several

images could use a single multipart request to sent all these images to the server. For more information, see

for instance Wikipedia (https://en.wikipedia.org/wiki/MIME#Multipart_messages) ot the W3C multipart

protocol desctiption (https://www.w3.org/Protocols/tfc1341/7_2_Multipart.html).

The p:http-request step constructs a multipart request if one or both of the following conditions is met:

* Multiple documents appear on the source port.

* The content-type request header (see “Specifying request headers” on page 70) starts with
multipart/.

If no specific content-type request header is specified and the source receives multiple documents, the

content type is set to multipart/mixed.

Multipart request must have a boundary marker: a string of characters that is inserted in between the message
parts. This is critical, because this marker must 7oz appear anywhere in the data itself. If it does, the request is
considered malformed. The boundary marker as used by p:http-request is constructed as follows:

* If the content-type request header contains a boundary parameter, this is used.

For instance, by setting the content-type to multipart/mixed;
boundary=gc@p43qeM2Yt08jU534c@p, the boundary marker becomes --gc@p4IqeM2Yt08jU534cOp
(the two hyphens in front are prescribed by the protocol).

e If this is not the case, the boundary marker is implementation-defined and therefore dependent on the
XProc processor used. Unfortunately, there is no guarantee this boundary marker does not appear in the
data itself (which would make the request malformed).

When constructing the multipart message, each document on the source port is serialized (as if written to

disk). If a document has a serialization document-property, this is used to determine the serialization

format.

https://en.wikipedia.org/wiki/MIME#Multipart_messages
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

XProc 3.1 Step Reference 75

The separate documents in a multipart message can have request headers on their own. Examples of often
used headers are id, description and disposition. Document-properties of documents on the source
port that are in the http://www.w3.org/ns/xproc-http namespace will be used to construct request
headers for that particular document, using their local name (their name without namespace) as the request
header name.

Examples

Basic usage

The following example:

* Uses p:http-request to ask for the home page of the https://xprocref.org website, just like a web
browser. This fires an HT'TPS GET request and waits for the answet.

Notice that we have to supply a value for the source port, even if we don’t need it. In this case we simply
set it to <p:empty>.
* We strip the resulting HTML page to just its <head> (otherwise the result would be too big to display).
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result" sequence="true"/>

<p:http-request href="https://xprocref.org">
<p:with-input port="source">
<p:empty/>
</p:with-input>
</p:http-request>

<p:delete match="/h:html/h:body"/>
</p:declare-step>
Resulting HTML fragment:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="keywords" content="xproc xprocref xml"/>
<link href="css/bootstrap.min.css" rel="stylesheet"/>
<link href="css/xprocref.css" rel="stylesheet"/>
<script defer="" src="js/bootstrap.bundle.min.js"/>
<title>XProc steps (3.1)</title>
<link rel="shortcut icon" href="images/favicon.ico"/>
</head>
</html>

Viewing the request headers

When we want to see what p:http-request sends as request headers, we need some developer website that
tells us what the request headers are. There is such a server by Beeceptor (https://beeceptor.com/): send
some HTTP request to https://echo.free.beeceptor.com and what you receive is a JSON message
containing information about your request.

Sending a simple GET request to this URI returns (results vary depending on your IP, operating system,
browset, etc.):

{

"method": "GET",

"protocol”: "https",

"host": "echo.free.beeceptor.com",

"path": "/",

"ip": "84.29.5.211:52418",

"headers": {
"Host": "echo.free.beeceptor.com",
"User-Agent": "Apache-HttpClient/4.5.10 (Java/17.0.12)",
"Accept": "¥/*",
"Accept-Encoding": "gzip,deflate"

})

"parsedQueryParams”: {}

}

https://xprocref.org
https://beeceptor.com/
https://echo.free.beeceptor.com

XProc 3.1 Step Reference 76

The following example sends a simple HTTPS request to this server and uses the resulting JSON to construct
an XML document showing the HTTP request headers sent:

* The invocation of p:http-request just sends a GET request to https://echo.free.beeceptor.com.

* The result is a JSON message that the XProc processor turns into a map. This is now our context item,
accessible with the dot operator .

* A sub-map in this map called headers contains the header information we’re interested in. We extract
this part into a variable $headers.

* The <p:for-each> loops over all keys in the $headers sub-map.

* Ap:identity (pg 78) step is used to construct a (single element) XML document, containing the

request header name and value: <request-header name=".." value=".."/>

* The <p:for-each> loop now emits a sequence of documents, one for each request header. A p:wrap-
sequence (pg 188) step wraps this into an <http-request-headers> root element to produce a
well-formed XML document.

<p:declare-step xmlns:map="http://www.w3.0rg/2005/xpath-functions/map" xmlns:p="http://www.w3.org/ns/
xproc" version="3.0">

<p:output port="result" sequence="true"/>

<p:http-request href="https://echo.free.beeceptor.com">
<p:with-input port="source">
<p:empty/>
</p:with-input>
</p:http-request>

<p:variable name="headers" as="map(*)" select=".?headers"/>
<p:for-each>
<p:with-input select="map:keys($headers)"/>
<p:identity>
<p:with-input>
<request-header name="{.}" value="{$headers(.)}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="http-request-headers"/>

</p:declare-step>
Result document:

<http-request-headers>
<request-header name="Host" value="echo.free.beeceptor.com"/>
<request-header name="User-Agent" value="Apache-HttpClient/4.5.10 (Java/17.0.14)"/>
<request-header name="Accept" value="*/*"/>
<request-header name="Accept-Encoding" value="gzip,deflate"/>
</http-request-headers>

Adding a request header

The headers option can be used for additional request headers. In this example we add the bogus request
header called xyz and set it to the value 123. The code to view the request headers is identical to that of
Viewing the request headers (pg. 75):

<p:declare-step xmlns:map="http://www.w3.0rg/2005/xpath-functions/map" xmlns:p="http://www.w3.org/ns/
xproc" version="3.0">

<p:output port="result" sequence="true"/>

<p:http-request href="https://echo.free.beeceptor.com” headers="map{'xyz': '123' }">
<p:with-input port="source">
<p:empty/>
</p:with-input>
</p:http-request>

<p:variable name="headers" as="map(*)" select=".?headers"/>
<p:for-each>
<p:with-input select="map:keys($headers)"/>
<p:identity>
<p:with-input>
<request-header name="{.}" value="{$headers(.)}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="http-request-headers"/>

</p:declare-step>

https://echo.free.beeceptor.com

XProc 3.1 Step Reference 77

Result document:

<http-request-headers>
<request-header name="Host" value="echo.free.beeceptor.com"/>
<request-header name="User-Agent" value="Apache-HttpClient/4.5.10 (Java/17.0.14)"/>
<request-header name="Accept" value="*/*"/>
<request-header name="Accept-Encoding" value="gzip,deflate"/>
<request-header name="Xyz" value="123"/>
</http-request-headers>

Notice that the name of the request header is capitalized into Xyz. Request header names are case-insensitive,
but it is custom to capitalize them (start with an upper-case character).

Viewing the response headers

Inspecting the response headers can be done by using the map returned on the report port (see “The
response result and report” on page 73). The code to view the response headers is almost identical to that
of Viewing the request headers (pg. 75):

<p:declare-step xmlns:map="http://www.w3.0rg/2005/xpath-functions/map" xmlns:p="http://www.w3.org/ns/
xproc" version="3.0">

<p:output port="result" sequence="true"/>

<p:http-request href="https://echo.free.beeceptor.com” name="request">
<p:with-input port="source">
<p:empty/>
</p:with-input>
</p:http-request>

<p:variable name="response-headers" as="map(*)" select=".?headers" pipe="report@request"/>
<p:for-each>
<p:with-input select="map:keys($response-headers)"/>
<p:identity>
<p:with-input>
<response-header name="{.}" value="{$response-headers(.)}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="http-response-headers"/>

</p:declare-step>
Result document:

<http-response-headers>
<response-header name="access-control-allow-origin" value="*"/>
<response-header name="alt-svc" value="h3=" :4438"; ma=2592000"/>
<response-header name="content-type" value="application/json"/>
<response-header name="date" value="Tue, 15 Apr 2025 09:33:17 GMT"/>
<response-header name="vary" value="Accept-Encoding"/>
<response-header name="transfer-encoding" value="chunked"/>
</http-response-headers>

Additional details

* A relative value for the href option is resolved against the base URI of the element on which this option
is specified. In most cases this will be the static base URI of your pipeline (the path where the XProc
source containing the p:http-request is stored). This is very probably not what you want.

* HTTP request header names are case-insensitive, but keys in maps are not. This means that you could
specify the same request header multiple times in the headers option. For instance as Content-Type
and content-type. If that happens, error XC0127 (pg. 78) is raised.

* When constructing multipart requests (see “Multipart requests” on page 74): multiple documents on
the source port combined with a content-type header that does #o# start with multipart/ raises error
XC0133 (pg. 79).

XProc 3.1 Step Reference

78

Errors raised

Error code

XCee03 (pg 217)

Description
It is a dynamic error if a “username” or a “password” key is present without specifying

a value for the “auth-method” key, if the requested auth-method isn't supported, or the
authentication challenge contains an authentication method that isn't supported.

XCee30 (pg 217)

It is a dynamic error if the response body cannot be interpreted as requested (e.g.
application/json to override application/xml content).

XCe078 (pg. 218)

It is a dynamic error if the value associated with the “fail-on-timeout” is associated with
true() and a HTTP status code 408 is encountered.

XC0122 (pg. 219)

It is a dynamic error if the given method is not supported.

XCe123 (pg. 219)

It is a dynamic error if any key in the “auth” map is associated with a value that is not an
instance of the required type.

XC0124 (pg. 219)

It is a dynamic error if any key in the “parameters” map is associated with a value that is not
an instance of the required type.

XC0125 (pg. 219)

It is a dynamic error if the key “accept-multipart” as the value false() and a multipart
response is detected.

XC0126 (pg. 219)

It is a dynamic error if the XPath expression in assert evaluates to false.

XC0127 (pg. 219)

It is a dynamic error if the headers map contains two keys that are the same when compared
in a case-insensitive manner.

XCe128 (pg 219)

It is a dynamic error if the URI’s scheme is unknown or not supported.

XC0129 (pg. 219)

It is a dynamic error if the requested HTTP version is not supported.

XCe131 (pg. 219)

It is a dynamic error if the processor cannot support the requested encoding.

XC0132 (pg. 219)

It is a dynamic error if the override content encoding cannot be supported.

XC0133 (pg 219)

It is a dynamic error if more than one document appears on the source port and a content-
type header is present and the content type specified is not a multipart content type.

XC0203 (pg, 221)

It is a dynamic error if the specified boundary is not valid (for example, if it begins with two
hyphens “--7).

XDee79 (pg. 221)

It is a dynamic error if a supplied content-type is not a valid media type of the form
type/subtype+ext ” or « type/subtype .

2.25

p:identity

Copies the source to the result without modifications.

Summary

<p:declare-step type="p:identity">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>

</p:declare-step>

The p:identity step makes a verbatim copy of what appears on its source port to its result port.

Ports:

Content

Description

types

source input true any true The source document(s)

result output true any true The resulting document(s). These will be exactly the same as
what appeared on the source port.

Description

The p:identity step does... nothing, It makes a verbatim copy of all documents appearing on its source
port to its result port. Although it doesn’t do anything, it is actually extremely useful and virtually

indispensable. The examples below show some use cases.

XProc 3.1 Step Reference 79

Examples

Create a fixed document

There are many situations where you need to create a fixed document in your pipeline. For instance:
* On an error catch you want some <error ..> element as result:

<p:catch>
<p:identity>
<p:with-input>
<error .. />
</p:with-input>
</p:identity>
</p:catch>
* Some pipelines write their main results to disk and the actual output of the pipeline doesn’t matter. In
these cases it is often useful to produce some kind of report document with relevant information (for
instance, when it happened, where the results are, etc.):
<p:identity>
<p:with-input>
<report timestamp="{current-dateTime()}" href-result="{$href-result-location}" .. />
</p:with-input>
</p:identity>

Create an explicit anchor points in your pipeline

Because the p:identity step does’t do anything, it can be used to create “anchor points” in your pipeline.
Assume you have a complicated pipeline where some version of the document flowing through must be
used somewhere else. The p:identity step can be used to mark such a location explicitly. In the following
example an anchor point called raw-version is created and, later on, referred to:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<!-- Some complicated computations.. -->
<p:identity name="raw-version"/>
<!-- Some more complicated computations.. -->
<!-- And then a step refers back to the raw version: -->
<p:insert match="/*" position="first-child">
<p:port port="insertion" pipe="@raw-version"/>
</p:insert>
<!-- And some more computations.. -->
</p:declare-step>

You could also achieve this by using the name="raw-version" attribute on the last step of the first batch
of computations. However, by using an explicit p:identity step it stands out in the code. Also, when
the computations change (and they will), you don’t have to remember to keep the name="raw-version"
attribute on the /st one always.

Produce a processing message

XProc has a message attribute (or p:message on steps not in the XProc namespace) that results in a
message when the pipeline runs. Where this message appears depends on how the pipeline is run. Sometimes
you want to explicitly produce messages when some point in your pipeline is reached. Since p:identity
does’t do anything, it is ideal for this:

<p:identity message="We started processing!"/>

<p:identity message="- Input document {$href-input}"/>
<p:identity message="- Processing type {$processing-type}"/>

Additional details

* p:identity preserves all document-properties of the document(s) appearing on its source port.

XProc 3.1 Step Reference 80

2.26 p:insert

Inserts one document into another.

Summary

<p:declare-step type="p:insert">

<input port="source" primary="true" content-types="xml html" sequence="false"/>

<output port="result" primary="true" content-types="xml html text" sequence="false"/>

<input port="insertion" primary="false" content-types="xml html text" sequence="true"/>

<option name="match" as="xs:string" required="false" select="'/*""/>

<option name="position" as="xs:string" required="false" select="'after'" values="('first-child', 'last-
child', 'before’, 'after')"/>
</p:declare-step>

The p:insert step inserts the document(s) appearing on the insertion port into the document appearing
on the source port.

Ports:
Content ? Description
types
source input true xml false The base document to insert 7.
html
result output true xml false |The resulting document
html
text
insertion |input false xml true The document(s) to insert.
html
text
Options:
Reqp Default |Description
match xs:string false |/* The XSLT match pattern that indicates where to insert.
(XSLT
selection
pattern)

position xs:string false after Where to insert, relative to what was matched by the match option.
See “The position option” on page 80.

Description

The p:insert step can be used to insert one or more documents into another. It searches the document
appearing on its source port for matches as indicated by the match option. It then inserts the document(s)
appearing on its insertion port, as indicated by the position option. The result of the merge is emitted on
the result port.

The position option

The position option tells p:insert where to insert the document(s) in the insertion port, relative to
what was matched by the match option. There are 4 possible values:

first-child The insertion is made as the first child of what was matched.
last-child The insertion is made as the /as# child of what was matched.
before The insertion is made directly before what was matched. In other words: the insertion becomes

the immediate preceding sibling of the match.

after The insertion is made directly affer what was matched. In other words: the insertion becomes the
immediate following sibling of the match.

XProc 3.1 Step Reference

81

Examples

Basic usage

This simple example shows how to insert a (for the example, fixed) document into another, as a first child of

a match:
Source document:

<things>
<thing id="123">USB adapter</thing>
<thing id="456">Joystick</thing>
<thing id="789">Mouse</thing>
</things>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:insert position="first-child">
<p:with-input port="insertion">
<thing id="999">Keyboard</thing>
</p:with-input>
</p:insert>

</p:declare-step>
Result document:

<things>
<thing id="999">Keyboard</thing>
<thing id="123">USB adapter</thing>
<thing id="456">Joystick</thing>
<thing id="789">Mouse</thing>
</things>

Or, using the same source document, as the its last child:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:insert position="last-child">
<p:with-input port="insertion">
<thing id="999">Keyboard</thing>
</p:with-input>
</p:insert>

</p:declare-step>
Result document:

<things>
<thing id="123">USB adapter</thing>
<thing id="456">Joystick</thing>
<thing id="789">Mouse</thing>
<thing id="999">Keyboard</thing>
</things>

The following example, again using the same source document, inserts a new thing using the before value of

the position option:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:insert match="/things/thing[@id eq '456']" position="before">
<p:with-input port="insertion">
<thing id="999">Keyboard</thing>
</p:with-input>
</p:insert>

</p:declare-step>

XProc 3.1 Step Reference

82

Result document:

<things>
<thing id="123">USB adapter</thing>
<thing id="999">Keyboard</thing>
<thing id="456">Joystick</thing>
<thing id="789">Mouse</thing>
</things>

Inserting multiple times

The following example shows that when the match option matches multiple times, the insertion occurs
multiple times:

Source document:

<things>
<thing id="123">
<name>USB adapter</name>
</thing>
<thing id="456">
<name>Joystick</name>
</thing>
<thing id="789">
<name>Mouse</name>
</thing>
</things>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:insert match="thing" position="last-child">
<p:with-input port="insertion">
<description>TBD</description>
</p:with-input>
</p:insert>

</p:declare-step>
Result document:

<things>
<thing id="123">
<name>USB adapter</name>
<description>TBD</description>
</thing>
<thing id="456">
<name>Joystick</name>
<description>TBD</description>
</thing>
<thing id="789">
<name>Mouse</name>
<description>TBD</description>
</thing>
</things>

Inserting text

Starting XProc version 3.1, it is also possible to insert text into a document using the p:insert step:
Source document:

<things>
<thing id="123">USB adapter</thing>
<thing id="456">Joystick</thing>
<thing id="789">Mouse</thing>
</things>

XProc 3.1 Step Reference 83

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:insert match="/things/thing[@id eq '456']" position="last-child">
<p:with-input port="insertion">
<p:inline content-type="text/plain"> (speciall)</p:inline>
</p:with-input>
</p:insert>

</p:declare-step>
Result document:

<things>
<thing id="123">USB adapter</thing>
<thing id="456">Joystick (speciall)</thing>
<thing id="789">Mouse</thing>

</things>

Additional details

* It must be possible to insert the document(s) at the indicated location(s). For instance, the match option
cannot match an attribute and you cannot insert something before or after the document node. If this
happens, an appropriate error is raised.

* p:insert preserves all document-properties of the document(s) appearing on its source port.
The document-propetties of the document(s) appeating on its insertion port are not used/preserved.

* If the match option matches multiple times, multiple instances of the document(s) on the insertion
port are inserted. See Inserting multiple times (pg. 82).

* If the insertion port receives no document(s), nothing happens. The step will act as a p:identity
(pg: 78) step.

Errors raised

Error code Description ‘
XC0023 (pg 217) It is a dynamic error if the selection pattern matches a wrong type of node.
XC0024 (pg. 217) It is a dynamic error if the selection pattern matches a document node and the value of the

position is “before” or “after”.

XC0025 (pg. 217) It is a dynamic error if the selection pattern matches anything other than an element or a
document node and the value of the position option is “first-child” or “last-child”.

2.27 p:invisible-xml

Performs invisible XML processing;

Summary

<p:declare-step type="p:invisible-xml">
<input port="source" primary="true" content-types="any -xml -html" sequence="false"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<input port="grammar" primary="false" content-types="text xml" sequence="true"/>
<option name="fail-on-error" as="xs:boolean" required="false" select="true()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:invisible-xml step patses the document on the source port using invisible XML (https://
invisiblexml.org/1.0/). The grammar for this must be provided on the grammar port. The result will be
emitted on the result port.

https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/

XProc 3.1 Step Reference

84

Ports:

Type

Primary?

Conte

nt |Seq?

Description

source

result

input

output

true

true

types
any -
xml -
html

any

false

true

The source document to parse using the invisible XML
grammar (https://invisiblexml.org/1.0/) provided on the
grammar port.

If the grammar port is empty, this must contain a valid
invisible XML grammar (https://invisiblexml.otg/1.0/). See
the description of the grammar port.

The result of parsing the document on the source port.

grammar

input

false

text
xml

true

One of the following:

A single document containing the invisible XML
grammar (https://invisiblexml.org/1.0/) to use for
parsing the document on the source port. This
grammar can either be in text or XML format.

If empty, the document on the source must

contain a valid invisible XML grammar (https://
invisiblexml.org/1.0/). This is converted to its XML
representation and returned on the result port. See
Parsing the invisible XML grammar (pg. 85) for an
example.

Options:

Description

fail-on-error

Xs:boolean

false true

Determines what happens if the document cannot be

parsed:

* Iftrue, error XC0205 (pg. 80) is raised.

e If false, the step always succeeds. The invisible
XML specification (https:/ /invisiblexml.org/1.0/)
provides a mechanism to identify failed parses in
the output.

parameters

Description

map (xs :QName,

item()*)?

false O

Parameters used to control the parsing. The XProc
specification does not define any parameters for this
option. A specific XProc processor (or parser used)

might define its own.

Invisible XML (or ixml) is a method for treating non-XML documents as if they were XML, enabling authors
to write documents and data in a format they prefer while providing XML for processes that are more
effective with XML content.

The p:invisible-xml takes a document, usually text, and parses this using an invisible XML grammar
(https:/ /invisiblexml.org/1.0/) into an XML document. The grammar must be provided on the grammar
port. The result will appear on the result port.

Invisible XML has both a text and an XML representation and you can use both representations on the
grammar port. Converting the text to the XML grammar can be done by leaving the grammar port empty and

providing the text based grammar on the source port. See Parsing the invisible XML grammar (pg. 85)

for an example.

In most cases, p:invisible-xml relies on an external parser. You’ll probably have to do some XProc

processor dependent configuration before this step will work. Please consult the XProc processor
documentation about this.

https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/
https://invisiblexml.org/1.0/

XProc 3.1 Step Reference 85

Examples

Basic usage

We’te going to use a very basic invisible XML grammar (https://invisiblexml.org/1.0/) that parses a written
date into XML. The grammar looks like this:
date: s?, day, s, month, (s, year)? .
-s: =" "+ .
day: digit, digit? .
-digit: "e"; "1"; "2"; "3"; "4"; "5"; "6"; "7"; "8"; "9".
month: "January"; "February"; "March"; "April";
"May"; "June"; "July"; "August";
"September"; "October"; "November"; "December".
year: (digit, digit)?, digit, digit .

The input document is:
31 December 2021
Using the p:invisible-xml step to parse this, the result is as follows:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:invisible-xml>
<p:with-input port="grammar" href="grammar.txt"/>
</p:invisible-xml>

</p:declare-step>
Result document:

<date>
<day>31</day>
<month>December</month>
<year>2021</year>
</date>

Parsing the invisible XML grammar

We can parse the text representation of an invisible XML grammar into its XML representation by leaving the
grammar port empty and provide the text grammar on the source port. Using the same grammar as in Basic
usage (pg 85), the result is:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:invisible-xml>
<p:with-input port="grammar">
<p:empty/>
</p:with-input>
</p:invisible-xml>

</p:declare-step>

https://invisiblexml.org/1.0/

XProc 3.1 Step Reference 86

Result document:

<ixml>
<rule name="date">
<alt>
<option>
<nonterminal name="s"/>
</option>
<nonterminal name="day"/>
<nonterminal name="s"/>
<nonterminal name="month"/>
<option>
<alts>
<alt>
<nonterminal name="s"/>
<nonterminal name="year"/>
</alt>
</alts>
</option>
</alt>
</rule>
<rule mark=
<alt>
<repeatl>
<literal tmark=
</repeatl>
</alt>
</rule>
<rule name="day">
<alt>
<nonterminal name="digit"/>
<option>
<nonterminal name="digit"/>
</option>
</alt>
</rule>
<!-- .. (shortened) -->
</ixml>

name="s">

string=" "/>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* The resulting document will in the vast majority of cases be XML. However, the implementation allows
for returning other document types. If, how and when this happens is implementation defined and
therefore dependent on the XProc processor used.

Errors raised

Error code Description

XC0205 (pg. 221) It is a dynamic error if the source document cannot be parsed by the provided grammar.
XC0211 (pg 221) It is a dynamic error if more than one document appears on the grammar port.
XC0212 (pg 221) It is a dynamic error if the grammar provided is not a valid Invisible XML grammar.

2.28 p:json-join

Joins documents into a JSON array document.

Summary

<p:declare-step type="p:json-join">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="application/json" sequence="false"/>
<option name="flatten-to-depth" as="xs:string?" required="false" select="'0""/>
</p:declare-step>

The p:json-join step joins the document(s) appearing on the source port into a JSON array. This array is
returned as a single JSON document on the result port.

XProc 3.1 Step Reference 87

Ports:
Type Primary? |Content types Description
source input true any true The documents to join.
result output true application/json false The resulting JSON array document

containing the source documents.

Options:

Req? Default Description

flatten-to-depth |xs:string? |false 0 Specifies whether and to which depth JSON source
documents that are arrays must be “flattened”. See
“Flattening arrays” on page 87.
Please notice that the data type of this option is
xs:string (and not xs:integer as you might expect).
This is because it can also take the value unbounded.

Description

The p:json-join step takes the document(s) appearing on its source port and joins them into a JSON
array. How the source documents end up in the resulting array depends on their type:

* A JSON source document that is 707 an array is added to the result as a member of the resulting array.

* A JSON source document that is itself an array is also added to the resulting array. However, depending
on the value of the flatten-to-depth option, additional “flattening’ can happen. See “Flattening
arrays” on page 87.

* An XML, HTML or text document is first serialized (as if written to disk) and then added as a string to
the resulting array.

* Whether p:json-join can handle any other media types is implementation-defined and therefore
dependent on the XProc processor used.

The resulting array is emitted as a single JSON document on the result port.

Flattening arrays

Depending on the value of the flatten-to-depth option, "flattening” of the resulting array takes place.
Flattening here means that if there are members of the resulting array that are itself arrays, their members will
appear as individual members in the final result. For instance, flattening ["a", "b", ["c", "d"]] results
in["a", "b", "c", "d"].

What happens exactly depends on the value of the flatten-to-depth option:

* If @ (default), no flattening takes place.

* If 1, any array on the source port is flattened into the final result.

* If greater than 1, flattening is applied recursively to arrays in arrays, up to the given depth.

* If unbounded, all arrays are flattened.

See Flattening arrays (pg. 88) for an example.

XProc 3.1 Step Reference 88
Examples

Basic usage

The following pipeline produces a sequence of 3 documents on the source port of p:json-join: An XML,

a text and a JSON document. This is merrily joined into a single array:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:inline>
<some-xml a="b"/>
</p:inline>
<p:inline content-type="text/plain">Hello there!</p:inline>

<p:inline content-type="application/json" expand-text="false">{"key": 12345}</p:inline>

</p:input>
<p:output port="result"/>

<p:json-join/>
</p:declare-step>
Result document:

["\n <some-xml a=\"b\"\/>\n ","Hello there!",{"key":12345}]

Flattening arrays

The following pipeline produces a sequence of 2 documents on the source port of p:json-join: A JSON

text and a JSON array. If we do #o# flatten it, the source array will simply appear as a member of the resulting

array:
<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:inline content-type="application/json">"Hello!"</p:inline>

<p:inline content-type="application/json">["a", "b", ["c", "d"]]</p:inline>

</p:input>
<p:output port="result"/>

<p:json-join/>
</p:declare-step>
Result document:

["Hellol",["a","b", ["c","d"]]]

By setting the flatten-to-depth option to 1, the source array is flattened:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:inline content-type="application/json">"Hello!"</p:inline>

<p:inline content-type="application/json">["a", "b", ["c", "d"]]</p:inline>

</p:input>
<p:output port="result"/>

<p:json-join flatten-to-depth="1"/>
</p:declare-step>
Result document:

["Hello!","a","b",["c","d"]]

If we increase the flatten-to-depth option to 2, the inner array is also flattened. A value unbounded

would have had the same effect here.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:inline content-type="application/json">"Hello!"</p:inline>

<p:inline content-type="application/json">["a", "b", ["c", "d"]]</p:inline>

</p:input>
<p:output port="result"/>

<p:json-join flatten-to-depth="2"/>

</p:declare-step>

XProc 3.1 Step Reference 89

Result document:

["Hello!™,"a","b","c","d"]

Additional details

* No document-properties of the source document(s) survive.
* The resulting document has no base-uri property.

* If there are no documents appearing on the source port, the result port returns the empty sequence.

Errors raised

Error code Description

XCe111 (pg 219) It is a dynamic error if a document of an unsupported document type appears on port source
of p:json-join.

XCe119 (pg 219) It is a dynamic error if flatten is neither “unbounded”, nor a string that may be cast to a
non-negative integer.

2.29 p:json-merge

Joins documents into a JSON map document.

Summary

<p:declare-step type="p:json-merge">

<input port="source" primary="true" content-types="any" sequence="true"/>

<output port="result" primary="true" content-types="application/json" sequence="false"/>

<option name="duplicates" as="item()*" required="false" select="'use-first'" values="('reject', 'use-
first', 'use-last', 'use-any', 'combine')"/>

<option name="key" as="xs:string" required="false" select=
</p:declare-step>

concat(,$p:index)'"/>

The p:json-merge step merges the document(s) appearing on the source port into a JSON map. This map
is returned as a single JSON document on the result port.

XProc 3.1 Step Reference 90

Ports:
Type Primary? |Content types Description
source input true any true The documents to join.
result output true application/json false The resulting JSON map document containing

the source documents.

Options:
Description
duplicates item()* false use-first Specifies what to do with duplicate keys in the
resulting map. See “Handling duplicates” on
page 90.
key xs:string false concat("_", An XPath expression that computes the value for
(XPath $p:index) the key of an entry in the resulting map.
expression) This expression is evaluated with the document

it is applied to as context item. A variable
$p:index is available that holds the index
(sequence number) of the document on the
source port.

See Computing a different key (pg: 91) for an
example of how to use this option.

Description

The p:json-merge step takes the document(s) appearing on its source port and joins them into a JSON
map (also know as JSON object). How the source documents end up in the resulting map depends on their

type:
* For a JSON source document that is a map, all key/value paits are copied into the result map.

* For JSON documents that are not a map, XML, HTML and text documents, a new key/value pair is
created. The key is computed using the XPath expression in the key option. Regarding their value:

* A JSON document is used as is.

* An XML, HTML or text document is first serialized (as if written to disk) and then added as a string
to the resulting array.

* Whether p:json-merge can handle any other media types is implementation-defined and therefore
dependent on the XProc processor used.

Handling duplicates

While filling up the result map, it can happen that a key is already present. Duplicate keys are not allowed.
What happens in case of a duplicate key depends on the value of the duplicates option:

Value Description

reject When a duplicate key is detected, error XC0106 (pg. 92) is raised

use-first When a duplicate key is detected, the already present entry is used and the duplicate one is

(default) discarded.

use-last When a duplicate key is detected, the already present entry is discarded and the duplicate one is
used.

use-any When a duplicate key is detected, it is implementation-defined which one is retained.

combine When a duplicate key is detected, the values for both keys are turned into a sequence.
Watch out: A sequence of data as value in a map is perfectly fine in the general XPath data model.
This means that you can use a result with combined values in your pipeline without problems.
However, it is not allowed in JSON, so when you try to serialize such a map as a JSON document,
an error will occur.

See Handling duplicates (pg. 91) for an example.

XProc 3.1 Step Reference 91

Examples

Basic usage

The following pipeline produces a sequence of 3 documents on the source port of p:json-merge: An
XML, a JSON map and a text document. This is mertily joined into a single map. Notice that the key/value
pairs of the JSON map source document are now part of the resulting map.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:inline>
<some-xml a="b"/>
</p:inline>
<p:inline content-type="application/json" expand-text="false">{"key": 12345, "debug": true}</p:inline>
<p:inline content-type="text/plain">Hello there!</p:inline>
</p:input>
<p:output port="result"/>

<p:json-merge/>
</p:declare-step>
Result document:

{"_1":"\n <some-xml a=\"b\"\/>\n ","key":12345,"debug" :true,"_3":"Hello there!"}

Computing a different key

The following pipeline produces a sequence of 3 documents on the source port of p:json-merge: An XML
document, a JSON map and another XML document. With the key option we set the key for the result map
to the local name of the root elements: local-name(/*). Notice that what happens with the keys for the
second source document, which is itself a map, is not affected.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:inline>
<some-xml a="b"/>
</p:inline>
<p:inline content-type="application/json" expand-text="false">{"key": 12345, "debug": true}</p:inline>
<p:inline>
<some-more-xml c="d"/>
</p:inline>
</p:input>
<p:output port="result"/>

<p:json-merge key="local-name(/*)"/>
</p:declare-step>
Result document:

{"some-xml":"\n <some-xml a=\"b\"\/>\n ","key":12345, "debug" : true, "some-more-xml":"\n <some-
more-xml c=\"d\"\/>\n "}

Handling duplicates

The following pipeline produces a sequence of 2 JSON map documents on the source port of p: json-
merge. Both maps contain an entry with the key dupkey. With duplicates="use-last" we specify that the
last one must be used.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:inline content-type="application/json" expand-text="false">{"dupkey": "a", "debug": true}</p:inline>

<p:inline content-type="application/json" expand-text="false">{"dupkey": "b"}</p:inline>

</p:input>
<p:output port="result"/>
<p:json-merge duplicates="use-last"/>
</p:declare-step>
Result document:

{"debug":true, "dupkey":"b"}

XProc 3.1 Step Reference 92

Additional details

* No document-properties of the source document(s) survive.
* The resulting document has no base-uri property.

* If there are no documents appearing on the source port, the result port returns the empty sequence.

Errors raised

Error code Description

XC0106 (pg. 219) It is a dynamic error if duplicate keys are encountered and option duplicates has value
“reject”.

XC0107 (pg. 219) It is a dynamic error if a document of a not supported document type appears on port source

of p:json-merge.

Xce11e (pg 219) It is a dynamic error if the evaluation of the XPath expression in option key for a given item
returns either a sequence, an array, a map, or a function.

2.30 p:label-elements

Labels elements by adding an attribute.

Summary

<p:declare-step type="p:label-elements">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="true"/>
<option name="attribute" as="xs:QName" required="false" select="'xml:id'"/>
<option name="label" as="xs:string" required="false" select="'concat("_",$p:index)"'"/>
<option name="match" as="xs:string" required="false" select=""*"'"/>
<option name="replace" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

The p:label-elements step generates a label for each matched element and stores that label in the specified
attribute.

Ports:
Primary? |Content |Seq? Description
source input true xml false The document to label.
html
result output true xml true The resulting document.
html
Options:
Name Type Req? Default Description
attribute |xs:QName false xml:id The name of the attribute that contains the label
label xs:string false concat("_", An XPath expression that computes the value for
(XPath $p:index) the label.
expression) This expression is evaluated with a matched

element as context item. A variable $p:index is
available that holds the index (sequence number)
of the match.

match xs:string false * An XSLT match expression that matches the
(XSLT elements to label.
selection
pattern)

replace xs:boolean false |true Whether to replace existing attributes. If this value

is false, existing attributes with the same name
as mentioned in the attribute option are left in
peace. If true (default), they are replaced.

XProc 3.1 Step Reference 93

Description

The p:label-elements step performs the following actions:

* It takes the document appearing on its source port and finds all the elements matched by the expression
in the match option.

* Tor every matched element, it evaluates the expression in the label option. This is done with the
matched element as context item (so accessible using the dot . operator). An additional variable
$p:index is available that holds the index (sequence number) of the match.

e If the replace option is true (default), an attribute is added/teplaced on the matched element. The
name of this attribute is in the attribute option. Its value comes from the evaluation of the expression
in the label option.

If the replace is false, an existing attribute with the same name is not replaced.

* After all matches are handled, the resulting document appears on the result port.

Examples

Basic usage

The following example uses all the default values of the options of p:label-elements. This means an
attribute called xml:id is added to every element. Values become an underscore followed by the index of the
element. Existing xm1:id attributes are replaced.

Source document:

<movies>
<movie title="Apocalypse now"/>
<movie title="Dune" xml:id="1234"/>
</movies>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:label-elements/>
</p:declare-step>
Result document:

<movies xml:id="_1">
<movie title="Apocalypse now" xml:id="_2"/>
<movie title="Dune" xml:id="_3"/>
</movies>
To make this a little more interesting, let’s label the <movie> elements only and compute their label based
on a generated identifier (using generate-id() (https://www.w3.org/TR/xpath-functions-31/#func-
generate-id)) and the movie’s name (replacing whitespace using replace() (https://www.w3.org/TR/xpath-
functions-31/#func-replace)). We keep existing xml:1id attributes. The source document is the same as in the
previous example.
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:label-elements match="movie" label="generate-
id() || '_" || replace(@title, '\s', '-')" replace="false"/>

</p:declare-step>
Result document:

<movies>
<movie title="Apocalypse now" xml:id="id1415850448_Apocalypse-now"/>
<movie title="Dune" xml:id="1234"/>

</movies>

https://www.w3.org/TR/xpath-functions-31/#func-generate-id
https://www.w3.org/TR/xpath-functions-31/#func-generate-id
https://www.w3.org/TR/xpath-functions-31/#func-replace
https://www.w3.org/TR/xpath-functions-31/#func-replace

XProc 3.1 Step Reference 94

Additional details

* p:label-elements preserves all document-properties of the document(s) appearing on its source port.

Errors raised

Error code Description

XCe023 (pg. 217) It is a dynamic error if the selection pattern matches a wrong type of node.

231 p:load

Loads a document.

Summary

<p:declare-step type="p:load">
<output port="result" primary="true" content-types="any" sequence="false"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="content-type" as="xs:string?" required="false" select="()"/>
<option name="document-properties" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:load loads a document indicated by a URI and returns this on its result port.
Ports:

Type Primary? |Content |Seq? Description

types
result output true any The loaded document.

Options:

Default Description

href Xs:anyURI true The URI for loading the document.

In most cases, p:load will be used to load a file
from disk. An absolute URI for this must start with
file://. For instance, on Windows, file:///C:/
some/path/document.xml (although Windows
uses backslashes (\) to separate path components,
slashes (/) work fine and are more universal). Using
a single slash after file: also works: file:/C:/
some/path/document.xml.

If this value is relative, it is resolved against the
base URI of the element on which this option is
specified. In most cases this will be the static base
URI of your pipeline (the path where the XProc
source containing the p:load step is stored).

content-type xs:string? false @) The content-type of the document to load, for
instance text/plain or application/json. The
document is interpreted according to this.

If this option is not present, the content-type is
determined as described in “Determining the
content-type” on page 95.

document- map (xs :QName, false @) Any document-properties for the loaded document.

properties item()*)?

parameters map (xs :QName, false @) Parameters controlling the loading of the document.
item()*)? Some keys and values are determined by the type

of document loaded (see below). Any additional
parameters are implementation-defined and
therefore dependent on the XProc processor used.

XProc 3.1 Step Reference 95

Description

The p:1load step is one of the few that has no source port. It is used to load some document from disk, the
web or elsewhere, and returns this document on its result port. XProc must know what kind of document
it is loading, the mechanism for this is described in “Determining the content-type” on page 95. It is also
possible to set document-properties.

What exactly happens depends on the loaded document’s content-type:

* For an XML document-type, the document is loaded and interpreted (de-serialized) as XML.

There is one pre-defined parameter for the parameters option: dtd-validate (xs:boolean). If true,
DTD validation must be performed when parsing the document.

e Text document-types are loaded “as-is”.

* TFor a JSON document-type, the document is loaded and interpreted (de-serialized) as JSON.

The parameters option recognizes the parsing options as defined for the XPath parse-json()
(https:/ /www.w3.org/ TR /xpath-functions-31/#func-parse-json) function (the $options argument).

* TFor an HTML document-type, the document is loaded and parsed into well-formed XML, even although
HTML documents do not have to be well-formed. How this is done exactly is implementation-defined
and therefore dependent on the XProc processor used.

* For any other document-type, the document is loaded as a binary document.

There are many ways to load a document into an XProc pipeline. For instance, you could use the href

attribute of <p:with-input>, or use its <p:document> child element. The <p:document> element is even

defined as having the same functionality as p:load, so there’s no difference in functionality.

Why then p:load? Its main raison d’étre is probably as left-over from the XProc 1.0 days. Using a

p:load in XProc 1.0 was the only way to dynamically load a document, for instance when you had

computed its filename. In recent versions, using AVTs, this is no longer a problem: <p:with-input

href="{$filename}"/>.

The main reason for using p:load probably comes from software engineering: it makes it very explicit in

your code what you’re doing, an explicit p: load stands out more than a nested <p:document>. Whether this

is reason enough is up to you.

Determining the content-type

When a document is loaded, p:1oad must know its content-type. This is determined as follows:

* When a content-type option is specified, this is used.

* Ifaprotocol is used that specifies/returns a content-type, this is used. This is for instance the case when
loading documents over HTTP(S).

* If no explicit type information was found, determining the content-type is implementation-defined and
therefore dependent on the XProc processor used.
When loading a document from disk (using the file:// protocol), in most cases, the XProc processor
determines the content-type based on the filename extension. So a .xml file will become XML, . txt
text, etc. What extensions are mapped to what content-type is, again, implementation-defined. However,
you can be reasonably sure the most common extensions are interpreted correctly.

Examples

Basic usage

Assume there is an XML document (in the same location as the pipeline) called extra.xml with the
following contents:
<extras>

<extra>This is nice!</extra>
</extras>

https://www.w3.org/TR/xpath-functions-31/#func-parse-json
https://www.w3.org/TR/xpath-functions-31/#func-parse-json

XProc 3.1 Step Reference 96

The most simple pipeline that uses p:1load to load this document is:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:load href="extra.xml"/>

</p:declare-step>
Result document:

<extras>
<extra>This is nicel!</extra>
</extras>

Additional details

* With regard to the document-properties of the loaded document:
* The content-type document-property is the content-type of the loaded document. See also
“Determining the content-type” on page 95.
* The base-uri document-property is, in most cases, the URI the document is loaded from, as
indicated by the href option.
However, the document-properties option might also contain a base-uri entry. If so, the value
in the document-properties option is used.
* A content-type can be specified using the content-type option and as en entry in the document-
properties option map. If both are present they must be the same. If not, error XD@062 (pg. 96) is

raised.

Errors raised

Error code

XD0e11 (pg. 221)

XDee23 (pg. 221)

Description
It is a dynamic error if the resource referenced by the href option does not exist, cannot be

accessed or is not a file.

It is a dynamic error if a DTD wvalidation is performed and either the document is not valid or
no DTD is found.

XD0043 (pg 221)

It is a dynamic error if the dtd-validate parameter is true and the processor does not
support DTD validation.

XD@e49 (pg. 221)
XD@es57 (pg. 221)

It is a dynamic error if the text value is not a well-formed XML document

It is a dynamic error if the text document does not conform to the JSON grammar, unless the
parameter liberal is true and the processor chooses to accept the deviation.

XD8e58 (pg. 221)

XD@es59 (pg. 221)

XD0es0 (pg. 221)

It is a dynamic error if the parameter duplicates is reject and the text document contains a
JSON object with duplicate keys.

It is a dynamic error if the parameter map contains an entry whose key is defined in the
specification of fn:parse-json and whose value is not valid for that key, or if it contains an
entry with the key fallback when the parameter escape with true() is also present.

It is a dynamic error if the text document can not be converted into the XPath data model

XDe062 (pg. 221)

It is a dynamic error if the @content-type is specified and the document-properties has a
“content-type” that is not the same.

XDe064 (pg. 221)

It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.tfc-editor.org/info/1fc3980) .

XDeo78 (pg. 221)

It is a dynamic error if the loaded document cannot be represented as an HTML document in
the XPath data model.

XDe079 (pg. 221)

It is a dynamic error if a supplied content-type is not a valid media type of the form “

type/subtype+ext ” or « type/subtype .

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 97

2.32 p:make-absolute-uris

Make URIs in the document absolute.

Summary

<p:declare-step type="p:make-absolute-uris">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<option name="match" as="xs:string" required="true"/>
<option name="base-uri" as="xs:anyURI?" required="false" select="()"/>
</p:declare-step>

The p:make-absolute-uris step makes element and/or attribute values in the document appearing on the
source port absolute by applying a base URI.

Ports:
Primary? |Content |Seq? Description
source input true xml false The document to resolve the URIs in.
html
result output true xml false |The resulting document.
html
Options:
) Default Description
match xs:string true The XSLT match pattern for the attributes and/or elements that
(XSLT hold the URIs to change.
selection
pattern)
base-uri xs:anyURI? |false O The base URI to use for making the matched attributes/elements
absolute.
If this option is not specified, the base URI of the matched
element/attribute in the source document is used. In most cases
this will be the location (path on disk) where it originated from.

Description

The p:make-absolute-uris step takes the document appearing on its source port and searches for
elements and/or attributes as indicated by the match option. The values of these elements/attributes are
taken as URIs and, if relative, resolved against a base URI as specified in the base-uri option. If thete's no
base-uri option, the base URI of the element/attribute is used.

Why is this useful? URIs in documents that are edited or received from the web are often relative. They
point to other documents, for instance images, that are elsewhere on disk or the web, in a location re/ative to
the source document. For instance: images/picture.jpg. This allows for flexibility in the location of the
documents. However, when processing these URIs and access the referenced documents, the code needs to
know how to resolve them into absolute ones. It is practical to arrange all this URI resolving in advance, and
this is what p:make-absolute-uris is for.

There is an important thing to keep in mind when supplying a value for the base-uri option:

* When its value ends with a slash (/), it points to a focation. All URIs are resolved against that location. For
instance: file:///myapp/images/

* When its value does 7of end with a slash, it points to a document. All URIs are resolved against the
location of this document. For instance, for a base-uri value file:///myapp/images/logo.svg, the
URIs are resolved against the location file:///myapp/images/

The Basic usage (pg. 98) example shows this difference.

XProc 3.1 Step Reference 98

Examples

Basic usage

This example shows what happens to different kinds of URIs when resolved. The base-uri value here
points to a location (because it ends with a /).

Source document:

<URIs>
<URI>image.jpg</URI>
<URI>A/B/C/</URI>
<URI>/image.jpg</URI>
<URI>https://xprocref.org/index.html</URI>
</URIs>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:make-absolute-uris match="URI" base-uri="file:///X/Y/Z/"/>

</p:declare-step>
Result document:

<URIs>
<URI>file:/../../image.jpg</URI>
<URI>file: ./file:/X/Y/Z/A/B/C/</URI>
<URI>file:/../../image.jpg</URI>
<URI>https://xprocref.org/index.html</URI>
</URIs>

Just to show you the difference, this is what happens when you omit the final / from the base-uri option.
Its value, file:///X/Y/Z, now points to a document called Z. The URIs are resolved against the location of
this document.
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:make-absolute-uris match="URI" base-uri="file:///X/Y/Z"/>
</p:declare-step>
Result document:

<URIs>
<URI>file:/../../image.jpg</URI>
<URI>file: ./file:/X/Y/A/B/C/</URI>
<URI>file:/../../image.jpg</URI>
<URI>https://xprocref.org/index.html</URI>
</URIs>

Additional details

* p:make-absolute-uris preserves all document-properties of the document(s) appearing on its source
port.

* The match option must match attributes or elements. If anything else is matched, error XC0023
(pg 99) is raised.

* A relative value for the base-uri option is resolved against the base URI of the element on which this
option is specified. In most cases this will be the static base URI of your pipeline (the path where the
XProc source containing the p:make-absolute-uris is stored). This is very probably not what you
want.

* Ifno base-uri option is specified and an element/attribute matched has no base URI also, the result is
implementation-defined and therefore dependent on the XProc processor used.

XProc 3.1 Step Reference 99

Errors raised

Error code Description

XCe023 (pg. 217) It is a dynamic error if the selection pattern matches a wrong type of node.

XDoo64 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.rfc-editor.org/info/1fc3986) .

2.33 p:markdown-to-html

Converts a Markdown document into HTML.

Summary

<p:declare-step type="p:markdown-to-html">

<input port="source" primary="true" content-types="text" sequence="false"/>

<output port="result" primary="true" content-types="html" sequence="false"/>

<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:markdown-to-html step converts a Markdown (https://www.markdownguide.org/) document
appearing on its source port into HTML. The result appears on the result port.
Ports:

Type Primary? |Content |Seq? Description

types

source |input true The Markdown (https:/ /www.markdownguide.org/)
document to transform.

result output true html false |The resulting HTML document.
Options:
Default Description
parameters map(xs:QName, false O Parameters used to control the conversion. The XProc
item()*)? specification does not define any parameters for this option.

A specific XProc processor (or renderer used) might define
its own.

Description

The p:markdown-to-html step converts a Markdown (https://www.markdownguide.org/) document
appearing on its source port into HTML. There are several flavors of Markdown, for instance
CommonMark (https://spec.commonmark.otg/0.31.2/). Which Markdown flavors are suppotted by
p:markdown-to-html is implementation-defined and therefore dependent on the XProc processor used.
The resulting HTML appears on the result port.

Examples

Basic usage

Assume we have a Markdown document that looks like this:

Example Markdown document

This is an example of a Markdown document to show what the conversion to HTML by " p:markdown-to-
html® looks like.

We can convert this into HTL using p :markdown-to-html:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:markdown-to-html/>

</p:declare-step>

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.markdownguide.org/
https://www.markdownguide.org/
https://www.markdownguide.org/
https://spec.commonmark.org/0.31.2/

XProc 3.1 Step Reference 100

Result document:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head/>
<body>
<h1>Example Markdown document</h1>
<p>This is an example of a Markdown document to show what the conversion to HTML by <code>p:markdown-
to-html</code> looks like.</p>
</body>
</html>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

2.34 p:message

Produces a message.

Summary

<p:declare-step type="p:message">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<option name="select" as="item()*" required="true"/>
<option name="test" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

The p:message step produces a message that is, usually, printed on the console. The effect (when the test
option is true) is the same as using a message/p:message attribute on a step.

Ports:
Primary? |Content [Seqs Description
types
source input true any true The source document(s)
result output true any true The resulting document(s). These will be exactly the same as

what appeared on the source port.

Options:
Reqp Default |Description
select item()* true The message to produce
(XPath
expression)
‘test ‘xs :boolean false ‘tr‘ue ‘If true, the message in the select attribute is produced.
Description

Steps in general can produce messages by using the message (for steps in the XProc namespace) or
p:message (for steps in other namespaces) attribute. What “produce” here actually means is implementation-
defined and therefore depends on the XProc processor used. However, usually it means “printed on the
console” and/or “output through stdout”: a command-line message appears when the processor executes
the step.

The p:message step is an alternative way to produce these messages. When the test option is true
(default), the expression in the select option is evaluated and the result is produced/shown, as a message. If
the test option is false, nothing happens.

The step itself, irrespective of the value of the test option, simply passes what it gets on its source port
unaltered to its result port. In other words, it acts as a p:identity (pg 78) step.

XProc 3.1 Step Reference 101

Examples

Basic usage

Assume you have a pipeline that does some preliminary things (getting documents, computing variables, etc.)
and then starts the real computation of something. In-between you want a message that says the computation
has started, but only when enabled by an option. Here is an example of how to do this using the p:message

step:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" xmlns:xs="http://www.w3.0rg/2001/
XMLSchema" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:option name="debug-messages-on" as="xs:boolean" select="true()"/>

<!-- Some preliminary stuff.. -->

<p:message test="{$debug-messages-on}" select="'Starting computation at || current-dateTime()"/>

<!-- Steps that implement the computation.. -->
</p:declare-step>

It is certainly possible to implement this without the p:message step, using a p:identity (pg. 78) step
with a message attribute:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" xmlns:xs="http://www.w3.0rg/2001/
XMLSchema" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:option static="true" name="debug-messages-on" as="xs:boolean" select="true()"/>
<!-- Some preliminary stuff.. -->
<p:identity use-when="$debug-messages-on" message="Starting computation at {current-dateTime()}"/>
<!-- Steps that implement the computation.. -->
</p:declare-step>

Please notice the differences between the two examples:

* In the first example the on/off switch for the message, hete the debug-messages-on option, is dynamic.
It can be computed/set during run-time, if necessaty.
Howevet, in the second example, this on/off switch is referenced in a use-when attribute. All use-
when attributes are evaluated during compile-time, and therefore the debug-messages-on option must
be static (hence its static="true" attribute). The only time you can change/set this option, and turn
messages on/off, is when invoking the pipeline.

* The select option of the p:message step is an XPath expression. The value of the message attribute is
an AVT (Attribute-Value Template). This results in a very different syntax, while the result is identical.

Additional details

* p:message preserves all document-properties of the document(s) appearing on its source port.

2.35 p:namespace-delete

Deletes namespaces from a document.

Summary

<p:declare-step type="p:namespace-delete">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<option name="prefixes" as="xs:string" required="true"/>

</p:declare-step>

XProc 3.1 Step Reference 102

The p:namespace-delete step deletes namespaces, for which the prefixes are listed in the prefixes
option, from elements and attributes in the document appearing on its source. The resulting document

appears on the result port.

Ports:
Type Primary? |Content |Seq? Description
types
source input true xml false |The document to delete the namespaces from.
html
result output true xml false |The resulting document
html
Options:
Description
prefixes xs:string true A whitespace-separated list of namespace-prefixes. These prefixes must be
defined in your pipeline. The namespaces associated with the prefixes are
removed.
Description

The p:namespace-delete step takes the value of its prefixes option, which must be a whitespace
separated list of namespace-prefixes, and finds out which namespaces are associated with these prefixes.
These namespace prefixes must be defined in the pipeline. It then uses this list to delete these namespaces
from elements and attributes in the document appearing on the source port. Elements and attributes that
were in one of these namespaces are now in the no-namespace. The resulting document appears on the
result port.

Note that matching is done on namespace #ame, not on namespace-prefix. This means that the prefix as used in
the prefixes option might be different from the one used in the document to delete the namespace from.
See the Basic usage with different namespace-prefixes (pg. 102) example.

Examples

Basic usage

The following example deletes the #myconfig namespace, associated with the prefix con, from the source
document.
Source document:
<config xmlns:con="#myconfig" con:status="special">
<con:thing>button</con:thing>
</config>

Pipeline document:

<p:declare-step xmlns:con="#myconfig" xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:namespace-delete prefixes="con"/>
</p:declare-step>
Result document:

<config status="special">
<thing>button</thing>
</config>

Basic usage with different namespace-prefixes

The following example again deletes the #myconfig namespace. However, the namespace-prefix used in the
pipeline is different from the one used in the source document.

Source document:

<config xmlns:con="#myconfig" con:status="special">
<con:thing>button</con:thing>
</config>

XProc 3.1 Step Reference 103

Pipeline document:
<p:declare-step xmlns:nsl="#myconfig" xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:namespace-delete prefixes="ns1"/>
</p:declare-step>
Result document:

<config status="special">
<thing>button</thing>
</config>

Additional details

* p:namespace-delete preserves all document-properties of the document(s) appearing on its source
port.

Errors raised

Error code Description

XCe108 (pg. 219) It is a dynamic error if any prefix is not in-scope at the point where the p:namespace-delete
occurs.
XCe109 (pg 219) It is a dynamic error if a namespace is to be removed from an attribute and the element

already has an attribute with the resulting name. For instance, removing the namespace
with the ns1 prefix will raise this error when applied to <something nsl:status="ok"
status="bad"/>.

2.36 p:namespace-rename

Renames a namespace to a new URL

Summary

<p:declare-step type="p:namespace-rename">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<option name="apply-
to" as="item()*" required="false" select="'all'" values="('all', 'elements’, 'attributes')"/>
<option name="from" as="xs:anyURI?" required="false" select="()"/>
<option name="to" as="xs:anyURI?" required="false" select="()"/>
</p:declare-step>

The p:namespace-rename step renames any namespace declaration or use of a namespace in a document to
a new value.

Ports:
Description
source input true xml false |The document to rename the namespace in.
html
result output true xml false |The resulting document.
html
Options:

Req? Default Description
apply-to item()* false all Whether to apply the changes to elements, attributes or both. See
“The apply-to option” on page 104 below.

from xs:anyURI? |[false O The namespace URI to rename from.

to xs:anyURI? |[false O The namespace URI to rename to.

XProc 3.1 Step Reference 104

Description

The p:namespace-rename step changes a namespace in a document into another namespace. It affects both
the namespace bindings and the namespace usage. Usually that's all there is to it, you can tely on the step to
take care of all the details (for those that need to know, see “Detailed processing” on page 104).

If you want to remove a namespace altogether, you need p:namespace-delete (pg. 101).

The apply-to option

The apply-to option can take the following values:

Value ‘Description ‘
all (default) Apply the changes to both elements and attributes.
attributes Apply the changes to attributes only.

elements Apply the changes to elements only.

The main reason for having an apply-to option is to avoid renaming attributes when the from option
specifies no namespace. This happens when you want to turn a document that is not in a namespace into
some namespace. Often however, attributes are never in a namespace. By setting the apply-to option to
elements, the attributes are not affected.

Detailed processing

The step takes the document appearing on its source port and examines it for occurrences of the namespace
mentioned in the from option:

* A namespace binding with the from value, either defining a prefix (xmlns:..=
(xmlns="

..") or a default namespace
.."") declaration, gets the value as specified in the to option.

If the from option is absent or the empty string, no bindings are changed/removed.
If the to option is not specified or the empty string, the binding is removed.

* Depending on the value of the apply-to option (see “The apply-to option” on page 104), elements
and/or attributes that are in the from namespace are turned into the to namespace.

If the from option is absent to the empty string, the changes apply to elements/attributes without a
namespace (that are in the no-namespace).

If the to option is not specified or the empty string, the namespace of the element/attribute is removed
(putting it into the no-namespace).

Examples

Basic usage

Source document:

<some-document xmlns="#some-namespace">
<contents a="b"/>
</some-document>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:namespace-rename from="#some-namespace" to="#some-other-namespace"/>

</p:declare-step>
Result document:

<some-document xmlns="#some-other-namespace">
<contents a="b"/>
</some-document>

This also works when the source document uses a namespace prefix:

<ns:some-document xmlns:ns="#some-namespace">
<ns:contents a="b"/>
</ns:some-document>

XProc 3.1 Step Reference 105

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:namespace-rename from="#some-namespace" to="#some-other-namespace"/>

</p:declare-step>
Result document:

<ns:some-document xmlns:ns="#some-other-namespace">
<ns:contents a="b"/>
</ns:some-document>

Renaming to a namespace

If you rename a document from the no-namespace into a namespace, you usually doz# want to rename the
attributes to that namespace as well. However, if you don’t do anything special, this is exactly what will
happen:

Source document:

<some-document>
<contents a="b"/>
</some-document>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:namespace-rename to="#some-namespace"/>
</p:declare-step>
Result document:

<some-document xmlns="#some-namespace">
<contents xmlns:_1="#some-namespace"” _1l:a="b"/>
</some-document>

The XProc processor invents a namespace prefix, and uses this to put the attribute(s) in the target namespace
as well. To avoid this, set the apply-to option to elements:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:namespace-rename to="#some-namespace" apply-to="elements"/>
</p:declare-step>
Result document:

<some-document xmlns="#some-namespace">
<contents a="b"/>
</some-document>

Additional details

* p:namespace-rename preserves all document-properties of the document(s) appearing on its source
pott.
* If the value of the from and to option are the same nothing happens. The step acts like a p:identity

(pg: 78) step.

XProc 3.1 Step Reference 106

Errors raised

XCe014 (pg. 217) It is a dynamic error if the XML namespace (http://www.w3.org/XML/1998/namespace) or
the XMLNS namespace (http://www.w3.0rg/2000/xmlns/) is the value of either the from
option or the to option.

XC0092 (pg: 218) It is a dynamic error if as a consequence of changing or removing the namespace of an

attribute the attribute's name is not unique on the respective element.

2.37 p:os-exec

Runs an external command.

Summary

<p:declare-step type="p:os-exec">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<output port="error" primary="false" content-types="any" sequence="true"/>
<output port="exit-status" primary="false" content-types="application/xml" sequence="false"/>
<option name="command" as="xs:string" required="true"/>
<option name="args" as="xs:string*" required="false" select="()"/>
<option name="cwd" as="xs:string?" required="false" select="()"/>
<option name="error-content-type" as="xs:string" required="false" select=""text/plain'"/>
<option name="failure-threshold" as="xs:integer?" required="false" select="()"/>
<option name="path-separator" as="xs:string?" required="false" select="()"/>
<option name="result-content-type" as="xs:string" required="false" select="'text/plain'"/>
<option name="serialization" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:os-exec step runs the external command as specified in the command and args options. It passes the
input that arrives on its source port as standard input to the command. The standard output and standard
error of the command ate returned on the result and error ports.

XProc 3.1 Step Reference 107

Ports:

Type Primary? Content types Description

source input |true any true The document that appears on the
standard input of the external command.
If the source port is empty, the command
receives nothing on standard input.

This document is serialized (as if written
to disk) first. For this, the value of the
serialization document-property and
that of the serialization option are
used. See the serialization option for
more information.

The port accepts zero or one document.
For multiple documents, error XC@032
(pg 109) is raised.
If you want the source port to be empty,
you must specify this:

<p:with-input port="source">

<p:empty/>

</p:with-input>
result output |true any true The result of the external command:
what was written by the command on the
standard output.

The standard output of the command
is processed as if it was read from disk
by p:load (pg. 94). The value of

the result-content-type option of
p:os-exec is taken as the value for
the content-type option of p:load
(pg 94).

If there is no content on the standard
output, this port will be empty.

error output |false any true The error result of the external command:
what was written by the command on the
standard error.

The standard error of the command
is processed as if it was read from disk
by p:load (pg. 94). The value of

the error-content-type option of
p:os-exec is taken as the value for
the content-type option of p:load
(pgs 94).

If there is no content on the standard
errof, this port will be empty.

exit-status output |false application/xml false A <c:result> clement containing

the system exit status, as an integer
(the ¢ prefix here is bound to the
http://www.w3.0org/ns/xproc-step
namespace).

XProc 3.1 Step Reference 108

Options:
Default Description
command xs:string true The external command to execute (without
arguments).
args xs:string* false @) The arguments for the external command (as a

sequence of strings).

cwd xs:string? false @) The current working directory for the
execution of the command.

If this option is left unspecified, the current
working directory will be implementation-
defined and therefore depends on the XProc
processor used.

To resolve variations in the syntax of
directory specifications, the value supplied
for this option will be normalized using the
p:urify() (https://spec.xproc.org/
master/head/xproc/#f.urify) function.

error-content- xs:string false |text/plain |The content type of the command’s error
type result (its standard error). See the description
of the error port.

failure-threshold |xs:integer? false 0 If a value for this option is supplied and the
command exit status is greater than this value,
error XCO064 (pg. 109) is raised.
path-separator xs:string? false @) If specified, every occurrence of this character
that occurs in the command, args, or cwd
options will be replaced by the platform-
specific path separator character.

The value for this option must be exactly one
character long, if not, error XC@@63 (pg. 109)

is raised.
result-content- xs:string false |text/plain |The content type of the command’s result (its
type standard output). See the description of the
result port.
serialization map(xs:QName, |false @) This option can supply a map with serialization
item()*)? propetties (https://www.w3.org/ TR/ xslt-

xquety-setialization-31/) for setializing the
document on the source port, before it is
passed as the standard input of the command.

If the source document has a serialization
document-property, the two sets of
serialization properties are merged (properties
in the document-property have precedence).
Example:

serialization="map{ 'method': '"text'}"

Description

The p:os-exec step can be used to run an external command. For instance, a Python script or post-process
some result with something not available in XProc.

The command itself is specified using the command and args options. Every string in the args option

is a separate argument (also when it contains spaces). What appears on the result port is passed as the
command’s standard input.

The command’s output and error information is returned on the result and error ports. You can use the
result-content-type and error-content-type options to tailor how this comes out.

https://spec.xproc.org/master/head/xproc/#f.urify
https://spec.xproc.org/master/head/xproc/#f.urify
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/

XProc 3.1 Step Reference 109

Examples

Basic usage

This example runs the (Windows) dir command (that shows a directory overview) on the data/
subdirectory of where the pipeline is stored. It does so by starting the Windows command processor (called
cmd) with the arguments /C dir data. This is the same as typing dir data on the Windows command line.

A problem we have here is that we need to set the current working directory (in the cwd) to the location of
the pipeline. The example computes this, based on the static-base-uri() of the pipeline, using regular
expression magic. The cwd option of p:os-exec does not accept a URI, so we have to strip the file:/ in
front also. The result is stored in the $cwd variable.
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:variable name="cwd" select="static-base-uri() => replace('~file:/+"', '') => replace('[~/\\]+
$, "y

<p:os-exec command="cmd" cwd="{$cwd}">
<p:with-option name="args" select="('/C', 'dir', ‘'data')"/>
<p:with-input port="source">
<p:empty/>
</p:with-input>
</p:os-exec>

</p:declare-step>
Result document (text):

Volume in drive C is 0S
Volume Serial Number is 9EA2-E853

Directory of C:\.\data
08/01/2025 12:47 <DIR>

15/04/2025 11:27 <DIR> 0o
05/02/2025 14:05 46 x1.xml

05/02/2025 14:05 46 x2.xml
2 File(s) 92 bytes

2 Dir(s) 521.323.982.848 bytes free

Additional details

* The documents appearing on the output ports only have a content-type property. They have no other
document-properties (also no base-uri).

Errors raised

Error code Description

XC0032 (pg. 217) It is a dynamic error if more than one document appears on the source port of the <p:0s-
exec> step.

XC0033 (pg. 217) It is a dynamic error if the command cannot be run.

XC0034 (pg. 217) It is a dynamic error if the current working directory cannot be changed to the value of the
cwd option.

XC0063 (pg. 217) It is a dynamic error if the path-separator option is specified and is not exactly one
character long,

XCe064 (pg. 218) It is a dynamic error if the exit code from the command is greater than the specified
failure-threshold value.

XProc 3.1 Step Reference 110

2.38 p:os-info

Returns information about the operating system.

Summary

<p:declare-step type="p:os-info">
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
</p:declare-step>
The p:os-info step returns information about the operating system the XProc processor is running on,
which appears on the result port as an XML document.

Ports:

Content types ? Description

result output true application/xml false A <c:result> element describing properties
of the operating system. See “The result
document” on page 110 for more
information.

Description

The p:os-info step gathers information about the operating system the XProc processor is running on.
This results in an XML document on the result port.

The result document

The document appearing on the result port has a <c:result> root element (the ¢ prefix here is bound to
the http://www.w3.org/ns/xproc-step namespace).

Basic information is contained in a number of mandatory attributes. XProc processors may add other
attributes with operating system information, but these are, of course, implementation-defined and therefore
depend on the XProc processor used. Attribute values can be the empty string if they do not apply to the
runtime environment (which will rarely happen).

Environment variables are listed in <c:environment> child elements.

<c:result cwd
file-separator
os-architecture
os-name
os-version
path-separator
user-home
user-name
*? >

<c:environment name=".." value="..">*
</c:result>

Attribute # Description

cwd 1 |The current working directory (in operating system dependent notation). For instance C:
\user\erik\data\bin.

file-separator 1 |The file/path separatot character. For instance / on Unix or \ on Windows.

os-architecture 1 |The operating system architecture. For instance 1386.

0s-name 1 |The name of the operating system. For instance Mac 0S X or Windows 10.

os-version 1 |The version of the operating system. For instance 10.0.

path-separator 1 |The path separator character. For instance : on Unix or ; on Windows.

user-home 1 |The home directory of the current user (in operating system dependent notation). For
instance C:\user\erik\data.

user-name 1 |The (login) name of the current user. For instance erik

* ? |The XProc processor may add other attributes with information about the operating
system (in a different namespace). These attributes, their values and meaning are
implementation-defined and therefore depend on the XProc processor used.

XProc 3.1 Step Reference 111

Child element # |Description

c:environment name=".. * |Name and value of an environment variable.

value="."

Examples

Basic usage

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:os-info/>
</p:declare-step>
On the system used to develop the XProcRef site on, the partial result is:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step"
os-name="Windows 11"
user-home="C:\Users\erik"
file-separator="\"
user-name="erik"
path-separator=";"
os-version="10.0"
cwd="C:\.."
os-architecture="amdé64">
<c:environment name=".." value=".."/>
</c:result>

Some information (especially the names and values of the environment variables) is left out for privacy
reasons.

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

2.39 p:pack

Merges two document sequences, pair-wise.

Summary

<p:declare-step type="p:pack">
<input port="source" primary="true" content-types="text xml html" sequence="true"/>
<output port="result" primary="true" content-types="application/xml" sequence="true"/>
<input port="alternate" primary="false" content-types="text xml html" sequence="true"/>
<option name="wrapper" as="xs:QName" required="true"/>
<option name="attributes" as="map(xs:QName, xs:anyAtomicType)?" required="false" select="()"/>
</p:declare-step>

The p:pack step takes the document sequences appearing on its source and alternate ports and combines
these documents in a pair-wise fashion, wrapping the pairs in a wrapper element.

Ports:

Primary? |Content types ? Description
source input true text xml html true The first document sequence to merge.
result output true application/xml true The resulting merged document sequences.

alternate |input false text xml html true The second document sequence to merge.

XProc 3.1 Step Reference 112

Options:
Default Description
wrapper xs :QName true The element to wrap the document pairs in.
attributes map(xs:QName, false @) An optional map with entries (attribute name, attribute
xs:anyAtomicType)? value). The attributes specified in this map are created

on the wrapper element.

Specifying attributes using this option works the same
as performing a p:pack step (without an attributes
option), directly followed by a p:set-attributes

(pg 124) step.

Description

The p:pack step takes two document sequences, one on its source and one on its alternate port. It

then takes the first document in both sequences, concatenates these and wraps this in a wrapper element as
indicated by the wrapper option. The same is done for the second pair, etc. The resulting wrapped document
pairs are emitted on the result port.

If p:pack reaches the end of one input sequence before the other, the remaining documents will be wrapped
as single documents.

Examples

Basic usage

The following pipeline provides p:pack with two document sequences. The pairs are wrapped in a <pair-
wrapper> element. Since the sequence on the alternate port is one document longer than the one on the
source portt, the remaining document <alternate-doc-3/> is wrapped as single document.

The resulting document sequence here is wrapped using p:wrap-sequence (pg. 188), just to show the
results.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:pack wrapper="pair-wrapper">
<p:with-input port="source">
<source-doc-1/>
<source-doc-2/>
</p:with-input>
<p:with-input port="alternate">
<alternate-doc-1/>
<alternate-doc-2/>
<alternate-doc-3/>
</p:with-input>
</p:pack>

<p:wrap-sequence wrapper="all-packed-results"/>

</p:declare-step>
Result document:

<all-packed-results>
<pair-wrapper>
<source-doc-1/>
<alternate-doc-1/>
</pair-wrapper>
<pair-wrapper>
<source-doc-2/>
<alternate-doc-2/>
</pair-wrapper>
<pair-wrapper>
<alternate-doc-3/>
</pair-wrapper>
</all-packed-results>

XProc 3.1 Step Reference 113

Additional details

* No document-properties of the soutce/alternate documents survive.

* The resulting document(s) have no base-uri property.

2.40 p:rename

Renames nodes in a document.

Summary

<p:declare-step type="p:rename">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<option name="new-name" as="xs:QName" required="true"/>
<option name="match" as="xs:string" required="false" select="'/*"'"/>
</p:declare-step>

The p:rename step renames elements, attributes, or processing-instruction nodes, specified by an XSLT
selection pattern, in the document appearing on its source port.

Ports:
Primary? : Description
source input true xml false The document to rename the nodes in.
html
result output true xml false |The resulting document.
html
Options:

Req? Default | Description

new-name Xs:QName true The new name for the matched nodes.

match xs:string false /* The XSLT match pattern for the nodes to rename, as a string,
(XSLT
selection
pattern)

Description

Using p:rename, it becomes easy to rename elements, attributes, or processing-instructions in your
document. The step takes the XSLT match pattern in the match option and holds this against the document
appeating on its source port. Any matching nodes are renamed to the name provided in the new-name
option. Matched nodes must be elements, attributes, or processing-instructions (any other match results in
error XCOO23 (pg. 115)).

Examples

Basic usage

The following example renames an element, an attribute and a processing-instruction in the source document.
Source document:

<things>
<thing name="screw" id="A123"/>
<thing name="bolt" id="A789"/>
<?convert debug="true"?>
</things>

XProc 3.1 Step Reference 114

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:rename match="/*/thing" new-name="Thing"/>
<p:rename match="@name" new-name="thing-name"/>
<p:rename match="processing-instruction(convert)" new-name="debug-processing"/>

</p:declare-step>
Result document:
<things>
<Thing thing-name="screw" id="A123"/>
<Thing thing-name="bolt" id="A789"/>

<?debug-processing debug="true"?>
</things>

Renaming to an existing attribute

This example shows that when an attribute is renamed to one that is already present, the existing attribute is

deleted.
Source document:

<things>
<thing name="screw" id="A123" thing-name="something else"/>
</things>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:rename match="@name" new-name="thing-name"/>
</p:declare-step>
Result document:

<things>
<thing thing-name="screw" id="A123"/>
</things>

Additional details

* p:rename preserves all document-properties of the document(s) appearing on its source port.

e Ifan attribute is renamed to an attribute that already exists on this element, this existing attribute is
deleted. See the Renaming to an existing attribute (pg. 114) example.

* Ifan xml:base attribute is renamed to something else, the underlying base URI of the element is #o#
changed.
If an attribute is renamed 70 xml:base, the base URI of the underlying element is changed to the value of
this attribute.

XProc 3.1 Step Reference 115

Errors raised

Error code Description

XCe013 (pg. 217) It is a dynamic error if the pattern matches a processing instruction and the new name has a
non-null namespace.

XC0023 (pg. 217) It is a dynamic error if the selection pattern matches a wrong type of node.

2.41 p:replace

Replace nodes with a document.

Summary

<p:declare-step type="p:replace">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="text xml html" sequence="false"/>
<input port="replacement" primary="false" content-types="text xml html" sequence="false"/>
<option name="match" as="xs:string" required="true"/>

</p:declare-step>

The p:replace step takes the document appearing on its source port and replaces nodes matching the
match option with the document appearing on the replacement port.

Ports:
Type Primary? Content Seq? Description
types
source input true xml false |The document in which to replace nodes.
html
result output |true text false |The resulting document.
xml
html
replacement input false text false The document to replace the nodes with.
xml
html
Options:
Reqp Description
match xs:string |true The XSLT match pattern for the nodes to replace, as a string;
(XSLT
selection
pattern)
Description

The p:replace step takes the XSLT match pattern in the match option and holds this against the document
appearing on its source port. Any matching nodes are replaced by the document on the replacement port.
The resulting document is emitted on the result port.

This step replaces matched nodes with a complete document. If you need to replace matched nodes with
(just) strings, have a look at the p:string-replace (pg 134) step.

Examples

Basic usage

The following example replaces all <thing> elements with <another-thing/> elements.
Source document:

<things>
<thing>
<contents/>
</thing>
<thing/>
</things>

XProc 3.1 Step Reference 116

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:replace match="thing">
<p:with-input port="replacement">
<another-thing/>
</p:with-input>
</p:replace>

</p:declare-step>
Result document:

<things>
<another-thing/>
<another-thing/>
</things>

Alternative approach

What the p:replace step does is similar to what a simple p:viewport instruction does: it takes a matched
node and replaces it with something, This pipeline has the same functionality as the one in Basic usage
(pg 115):

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:viewport match="thing">
<p:identity>
<p:with-input>
<another-thing/>
</p:with-input>
</p:identity>
</p:viewport>

</p:declare-step>
Result document (using the same input document as in Basic usage (pg. 115)):

<things>
<another-thing/>
<another-thing/>
</things>

Additional details

* For obvious reasons, you cannot replace attributes and namespace nodes.
* Replacing by p:replace is not recursive. In other words: there are no replacements in a replacement.
* p:replace preserves all document-properties of the document(s) appearing on its source port.

There is one exception: if the resulting document contains only text, the content-type document-
property is changed to text/plain and the serialization document-property is removed.

Errors raised

Error code Description

XC0023 (pg. 217) It is a dynamic error if the selection pattern matches a wrong type of node.

242 p:run

Runs a dynamically loaded pipeline.

Summary

The p:run step executes a dynamically loaded pipeline within the current pipeline.

XProc 3.1 Step Reference 117

Description

In using XProc, there are cases where it is useful to be able to run a dynamically loaded pipeline. The p:run
step makes this possible. For instance:

* Assume you have an XProc pipeline that processes/executes some DSL (Domain Specific Language).
This language refers to XProc pipelines (by URI) that need to be executed as part of the DSL processing,

* Your pipeline gets so complicated that it becomes easier to dynamically construct another pipeline and run
this as part of your main pipeline.
Without p:run, all this wouldn’t be possible. Unfortunately, because various requirements surrounding
dynamic pipeline execution, the p:run step is very different from other steps: it has a totally different set of
child elements. Therefore, the step will be explained as if it was a separate XML element:
<p:run name? = xs:NCName >
(<p:with-input> |
<run-input>* |
<run-option>* |

<output>*)
</p:run>

Attribute # Type

name ? |xs:NCName The standard XProc step name attribute.

Child element # b

p:with-input 1 |Anonymous input port that receives the pipeline to run. This is #of the step’s primary port!

Its attributes and child elements are similar to the standard XProc <p:with-input> element,
except that, since the port is anonymous, it does not have a port attribute.

run-input 1 |Element for connecting the input ports of the pipeline being run.

Its attributes and child elements are similar to the standard XProc <p:with-input> element,
except that it has an additional boolean primary attribute.

run-option 1 |Element for passing options to the pipeline being run.

Its attributes and child elements are similar to the standard XProc <p:with-option> element,
except that it has an additional boolean static attribute.

output 1 |Element that declares an output port of the pipeline being run.

In handling all this, there are quite a few details involved, which are discussed in the sections below. However,
in the vast majority of cases, using p:run is not very difficult. You may want to look at the examples before
diving into the details.

Details specifying the pipeline to run

The pipeline to run (the dynamically executed pipeline) must be provided on the anonymous input port
of p:run (its “pipeline” port). This must of course be a valid XProc pipeline and it must have a version
attribute.
You connect this anonymous “pipeline” port by adding a single <p:with-input> child element to the
p:run, without a port attribute. For example, assume there is a step in my pipeline, named pipeline-
generating-step, that produces a pipeline on its primary result port. To execute this pipeline using
p:run, I would have to write:

<p:run>

<p:with-input pipe="result@pipeline-generating-step"/>
</;:run>

Take care: this anonymous “pipeline” port is 7of the primary port of p:run. So you must a/ways connect it, even
if the pipeline to run flows out of the primary output port of the step right before (in XProc terms: even if it
is the DRP, the Default Readable Port).

XProc 3.1 Step Reference 118

Details connecting input ports

The <p:run-input> element is used to connect the input ports of the dynamically executed pipeline. Its
attributes and child elements are almost similar to the standard XProc <p:with-input> element.

For example, to connect the primary source input port of the dynamically executed pipeline to some
document on disk, you could write:

<p:run>
<p:with-input href="my-dynamic-pipeline.xpl"/>
<p:run-input port="source" href="doc.xml"/>
</E:run>
There are a few things you need to keep in mind when connecting the input ports of the dynamically
executed pipeline:
* The additional boolean primary attribute of <p:run-input> can be used to declare that this port in the
dynamically executed pipeline is primary. Its default value depends:
e Ifthere is a single <p:run-input> element, its default value is true.
e If there are multiple <p:run-input> elements, its default value is false.
* If the primary input port of the pipeline to run is not explicitly connected to somewhere (in its <p:run-
input> element), it gets connected to the default readable port of p:run.
* The name of the primary input port, as declared by the <p:run-input> element of p:run, must be
the same as the name of the primary input port of the dynamically executed step. If not, error XC0206
(pg- 121) is raised.
* Any input ports of the dynamically executed step for which there is no corresponding <p:run-input>
element receive an empty connection (<p:empty/>).
* Any input ports mentioned in <p:run-input> elements that do not exist in the dynamically executed
pipeline are silently ignored.

Details specifying options

Options for the dynamically executed pipeline can be specified using one or more <p:run-option>
elements. Its attributes and child elements are almost similar to the standard XProc <p:with-option>
element.

There are a few additional details to reckon with:

* The <p:run-option> element has an additional boolean attribute static, which defaults to false.
Using static="true" allows you to specify static options for the pipeline to run.

* Any options of the dynamically executed pipeline that are not specified using <p:run-option> are
handled as expected: if they are required, an error will be raised, and if not, their default value applies.

* Any options set by <p:run-option> that do not exist in the dynamically executed pipeline ate silently
ignored.

Details specifying output ports

To be able to access the output ports of the dynamically executed pipeline, you have to declare these ports
on the p:run invocation using <p:output> elements. For example, if your dynamic pipeline has a primary
result output port and you want to access what comes out of this port in the pipeline that does the p:run,
you must write something like:
<p:run>
<p:with-input href="my-dynamic-pipeline.xpl"/>
<p:output port="result" primary="true"/>
</p:run>
A few details to consider:

* The <p:output> child element of p:run has the same definition as a normal <p:output> element, but
here it may not establish a connection to another port/step in the pipeline. In other words: you cannot
use the pipe attribute or a child <p:pipe> element.

* The name of the primary output port, as declared by the <p:output> element of p:run, »ust be the

same as the name of the primary output port of the dynamically executed step. If not, error XC0207
(pg 121) is raised.

XProc 3.1 Step Reference 119

e If the dynamically executed pipeline has output ports that are not declared in <p:output> elements of
p:run, their outputs will be silently discarded.

e If the p:run step declares additional output ports that are not present in the dynamically executed
pipeline, their outputs will be empty (<p:empty/>).

Examples

Basic usage

Suppose we have some kind of XML content in which we want to dynamically generate other content using
XProc pipelines. For example:

<body>
<p>Let's do some additions:</p>

<1li>
<generate href-pipeline="add-them.xpl" a="1" b="1"/>
</1i>
<1li>
<generate href-pipeline="add-them.xpl" a="7" b="3"/>
</1i>

</body>

The <generate> clements invokes another pipeline (named in its href-pipeline attribute) using p:run:

¢ The input to these generator pipelines, on their primary source port, is the <generate> element itself
(so it can access any attributes/child elements).

* The output of these generator pipelines, on their primary result port, is inserted back into the original
document, replacing the <generate> clement.

For this example, we only use one generator pipeline, called add-them.xpl. This simply adds the attributes a
and b and reports about this:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc” xmlns:xs="http://www.w3.0rg/2001/
XMLSchema" version="3.0" exclude-inline-prefixes="#all">

<p:input port="source"/>
<p:output port="result"/>
<p:variable name="a" as="xs:integer" select="xs:integer(/*/@a)"/>
<p:variable name="b" as="xs:integer" select="xs:integer(/*/@b)"/>

<p:identity>
<p:with-input>
<p>Adding {$a} to {$b} results in {$a + $b}!</p>
</p:with-input>
</p:identity>

</p:declare-step>
The main pipeline and its output are as follows:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:viewport match="generate">
<p:run>
<p:with-input href="{/*/@href-pipeline}"/>
<p:run-input port="source"/>
<p:output port="result"/>
</p:run>
</p:viewport>

</p:declare-step>

XProc 3.1 Step Reference 120

Result document:

<body>
<p>Let's do some additions:</p>

<p>Adding 1 to 1 results in 2!</p>
</1i>

<p>Adding 7 to 3 results in 10!</p>
</1i>

</body>

Using options

Building on the Basic usage (pg. 119) example, we’re going to add and use an option that specifies the
language of the generator output. For now this will only accept nl for Dutch. Any other language will default
to English.

The extended version of the generator pipeline, called add-them-extended. xpl, looks like this:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc” xmlns:xs="http://www.w3.0rg/2001/
XMLSchema" version="3.0" exclude-inline-prefixes="#all">

<p:input port="source"/>
<p:output port="result"/>

<p:option name="language" as="xs:string" required="true"/>

<p:variable name="a" as="xs:integer" select="xs:integer(/*/@a)"/>
<p:variable name="b" as="xs:integer" select="xs:integer(/*/@b)"/>

<p:choose>
<p:when test="$language eq 'nl'">
<p:identity>
<p:with-input>
<p>Als we {$a} optellen bij {$b} krijgen we {$a + $b}!</p>
</p:with-input>
</p:identity>
</p:when>
<p:otherwise>
<!-- Default language is English: -->
<p:identity>
<p:with-input>
<p>Adding {$a} to {$b} results in {$a + $b}!</p>
</p:with-input>
</p:identity>
</p:otherwise>
</p:choose>

</p:declare-step>
Let’s generate a Dutch version of our output:
Source document:

<body>
<p>Laten we optellen:</p>

<1li>
<generate href-pipeline="add-them-extended.xpl" a="1" b="1"/>
</1i>
<1li>
<generate href-pipeline="add-them-extended.xpl" a="7" b="3"/>
</1i>

</body>

XProc 3.1 Step Reference 121

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:viewport match="generate">
<p:run>
<p:with-input href="{/*/@href-pipeline}"/>
<p:run-input port="source"/>
<p:run-option name="language" select="'nl'"/>
<p:output port="result"/>
</p:run>
</p:viewport>

</p:declare-step>
Result document:

<body>
<p>Laten we optellen:</p>

<p>Als we 1 optellen bij 1 krijgen we 2!</p>
</1i>

<p>Als we 7 optellen bij 3 krijgen we 10!</p>
</1i>

</body>

Additional details

* What happens with any document-properties depends entirely on how the dynamically executed pipeline
handles these.

Errors raised

Error code Description

XC0200 (pg. 220) It is a dynamic error if the pipeline input to the p:run step is not a valid pipeline.

XC0206 (pg. 221) It is a dynamic error if the dynamically executed pipeline implicitly or explicitly declares a
primary input port with a different name than implicitly or explicitly specified in the p:run
invocation.

XC0207 (pg. 221) It is a dynamic error if the dynamically executed pipeline implicitly or explicitly declares a

primary output port with a different name than implicitly or explicitly specified in the p:run

invocation.

2.43 p:send-mail

Sends an email message.

Summary

<p:declare-step type="p:send-mail">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="auth" as="map(xs:string, item()+)?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="serialization" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:send-mail step sends an email message. This message, described in the XML format for mail
(https://datatracket.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03), must appear on the source port.

https://datatracker.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03
https://datatracker.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03

XProc 3.1 Step Reference 122

Ports:

Primary? |Content types Description

source input true any true The email message to send. The first document
on this port must be an XML document
describing the email message. It must conform
to the XML format for mail (https://
datatracket.ietf.org/doc/html/draft-klyne-
message-rfc822-xml-03).

The <content> element of this email message
specification may contain either text or HTML.
To send some other type as message body, you
must leave the <content> element out of the
first document and supply the body as a second
document.

Any additional documents are treated as email
attachments.

result output true application/xml false If the email was sent successfully, this port will
emit a short XML document containing just
<c:data>true</c:data> (the c prefix here is
bound to the http://www.w3.0rg/ns/xproc-
step namespace).

If something went wrong during the sending
operation, error XC0162 (pg. 124) is raised.

Options:
Reg? Default Description
auth map(xs:string, false O A map containing authentication parameters. See
item()+)? “Authentication parameters” on page 123 for
more information.
parameters map (xs :QName, false O a map containing additional information for
item()*)? constructing and sending the email. See “Step
parameters” on page 122 for more information.
serialization map(xs:QName, false O This option controls the serialization of any
item()*)? documents involved in constructing the mail.

If the source document has a serialization
document-property, the two sets of serialization
properties are merged (properties in the document-
property have precedence).

Description

The p:send-mail step attempts to send an email message using SMTP (https://nl.wikipedia.otg/wiki/
Simple_Mail_Transfer_Protocol). The address of the SMTP server and other details can be supplied using the
“Step parameters” on page 122 and “Authentication parameters” on page 123.

The email message itself must be described using the XML format for mail (https://datatracker.ietf.org/doc/
html/draft-klyne-message-rfc822-xml-03). Examples can be found in the specification or in the Basic usage
(pg 123) example below.

Step parameters

The parameters option contains additional information used for constructing and sending the email
message. It is a map that associates parameters (the keys in the map) with values. The following parameters
are defined:

Parameter Datatype Description

send- xs:boolean If true (default), the authentication information provided in the

authorization “Authentication parameters” on page 123 will be used. If false, no
authentication will be used when sending the mail.

host xs:string The URL of the SMTP server to use.

If no value for host is specified, it is implementation-defined which
server is used.

https://datatracker.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03
https://datatracker.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03
https://datatracker.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03
https://nl.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://nl.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://datatracker.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03
https://datatracker.ietf.org/doc/html/draft-klyne-message-rfc822-xml-03

XProc 3.1 Step Reference 123

Parameter Datatype Description

port xs:unsignedShort |The IP port to use when sending the mail to the SMTP server.

If no value for port is specified, it is implementation-defined which
port is used.

Depending on the XProc processor used, the parameters map may contain other, implementation-defined,
keys.

Authentication parameters

The auth option contains additional information used for the authentication with the SMTP server. Itis a

map that associates parameters (the keys in the map) with values. The following authentication parameters are
defined:

Parameter Datatype Description
username xs:string The username used for authentication.
password xs:string The password used for authentication.

Depending on the XProc processor used, the auth map may contain other, implementation-defined, keys.
Examples

Basic usage

Below a very basic example of how to construct an email message and use p:send-mail to send it. I hope I
get a lot of messages like this ;).

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source">
<p:inline>
<emx:Message xmlns:emx="URN:ietf:params:email-xml:" xmlns:rfc822="URN:ietf:params:rfc822:">
<rfc822:from>
<emx:Address>
<emx:adrs>mailto:someone@..</emx:adrs>
<emx:name>John Doe</emx:name>
</emx:Address>
</rfc822:from>
<rfc822:to>
<emx:Address>
<emx:adrs>mailto:erik@xatapult.nl</emx:adrs>
<emx:name>Erik Siegel</emx:name>
</emx:Address>
</rfc822:to>
<rfc822:subject>XProcRef is awesome</rfc822:subject>
<emx:content type="text/plain" xml:space="preserve">
Hi Erik,

XProcRef is awesome! Congrats and kudos!

Regards,
John Doe
</emx:content>
</emx:Message>
</p:inline>
</p:input>

<p:output port="result"/>

<p:send-mail>
<p:with-option name="auth" select="map{
‘username’: '..',
'password': '.."
¥'/>
<p:with-option name="parameters" select="map{
'send-authorization': true(),
‘host': '..",
‘port': ..
}'/>
</p:send-mail>

</p:declare-step>

XProc 3.1 Step Reference 124

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

Errors raised

Error code Description

XC0159 (pg. 220) It is a dynamic error if any key in the “auth” map is associated with a value that is not an
instance of the required type.

XC0160 (pg. 220) It is a dynamic error if any key in the “parameters” map is associated with a value that is not
an instance of the required type.

Xce161 (pg. 220) It is a dynamic error if the first document on the source port does not conform to the
required format.

XC0162 (pg. 220) It is a dynamic error if the email cannot be send.

2.44 p:set-attributes

Add (or replace) attributes on a set of elements.

Summary

<p:declare-step type="p:set-attributes">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<option name="attributes" as="map(xs:QName, xs:anyAtomicType)" required="true"/>
<option name="match" as="xs:string" required="false" select="'/*"'"/>
</p:declare-step>

The p:set-attributes step adds (or replaces) attributes as specified in the attributes option map. This
is done for the element(s) matched by the match option.

XProc 3.1 Step Reference 125

Ports:
Type Primary? |Content |Seq? Description
iTPES
source input true xml false |The document to add (or replace) the attributes on.
html
result output true xml false |The resulting document.
html
Options:
Reqp Default Description
attributes map(xs:QName, true A map with entries (attribute name, attribute value).
xs:anyAtomicType) If this map is empty, nothing will happen and the step
acts as a p:identity (pg. 78) step.
match xs:string (XSLT false /* The XSLT match pattern that selects the element(s) to
selection pattern) add (or replace) the attributes on. If not specified, the

root element is used.

This must be an XSLT match pattern that matches an
clement. If it matches any other kind of node, error
XC0023 (pg. 120) is raised.

Description

The p:set-attribute step:
* Takes the document appearing on its source port.
* Processes the elements that match the pattern in the match option:

* Ifaselected element does #oz contain an attribute with a name that is a key in the attributes
option map, an attribute with this name and a value as associated in the map is added to it.

* Ifaselected element already has such an attribute, its value is replaced with the value as associated in
the map.

* The resulting document appears on its result port.

If you just want to set a single attribute, you can also use the p:add-attribute (pg. 6) step.

Examples

Adding/replacing multiple attributes

This example adds the type="special" and a level="2" attributes to all <text> elements. One of the
input <text> elements already has a type attribute, but with a different value. This existing attribute is
replaced.

Source document:

<texts>

<text>Hello therel!</text>

<text>This is funny..</text>

<text type="normal”>And that's normal.</text>
</texts>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:set-attributes match="text" attributes="map{'type': 'special', 'level': 2}"/>
</p:declare-step>
Result document:

<texts>
<text type="special" level="2">Hello there!</text>
<text type="special" level="2">This is funny..</text>
<text type="special" level="2">And that's normal.</text>
</texts>

XProc 3.1 Step Reference 126

Additional details

* p:set-attributes preserves all document-properties of the document(s) appearing on its source port.

e Ifan attribute called xml:base is added or changed, the base URI of the element is updated accordingly.
See also category Base URI related (pg. 213).

* You cannot use this step to add or change a namespace declaration. Attempting to do so will result in
error XCOO59 (pg. 126).
Note, however, that it is possible to add an attribute whose namespace is not in scope on the element it is
added to. The XProc namespace fixup mechanism will take care of handling this and add the appropriate
namespace declarations.

Errors raised

Error code Description
XC0023 (pg 217) It is a dynamic error if that pattern matches anything other than element nodes.
XCe059 (pg. 217) It is a dynamic error if the QName value in the attribute-name option uses the

prefix “xmlns” or any other prefix that resolves to the namespace name http://
www.w3.0rg/2000/xmlns/.

2.45 p:set-properties

Sets or changes document-properties.

Summary

<p:declare-step type="p:set-properties">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="any" sequence="false"/>
<option name="properties" as="map(xs:QName, item()*)" required="true"/>
<option name="merge" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

The p:set-properties step sets or changes document-properties of the soutce document.

Ports:

Primary? |Content (Seqs Description

types
source input true any false |The document to adjust the document-properties of.
result output true any false The resulting document.
Options:
Default Description
properties map(xs:QName, [|true A map containing the document-properties to adjust. The
item()*) keys are the document-property names, the values their
values.

merge xs:boolean false |true If true (default), the supplied properties in the properties

option are merged with the existing document-properties,
replacing/overwriting existing ones. If false, the existing

document-properties are replaced.

Description

A document flowing through an XProc pipeline carries a set of document-properties with it. Document-
propetties are key/value pairs, where the key is a QName (which, in most cases, you can treat as just a
string). Their values can be anything. Getting the value(s) of document-properties can be done using the
XProc functions p:document-properties() (https://spec.xproc.org/master/head/xproc/#f.document-
properties) and p:document-property() (https://spec.xproc.otg/master/head/xproc/#f.document-
property).

XProc reserves three document-property names for its own usage: content-type, base-uri and
serialization (see here (https://spec.xproc.org/mastetr/head/xproc/#document-propetties) for more
information). However, you can also add your own and use them in any way you like.

https://spec.xproc.org/master/head/xproc/#f.document-properties
https://spec.xproc.org/master/head/xproc/#f.document-properties
https://spec.xproc.org/master/head/xproc/#f.document-property
https://spec.xproc.org/master/head/xproc/#f.document-property
https://spec.xproc.org/master/head/xproc/#document-properties

XProc 3.1 Step Reference 127

The p:set-properties step can be used to change (most) document-properties. For an example of using
p:set-properties see Converting XML to text (pg. 27) in step p:cast-content-type (pg. 22).

Additional details

* The p:set-properties step can nof change a document media type by altering the content-type
document-property. Any attempt to do this will result in error XCO069 (pg. 127). To change a
document media type use p:cast-content-type (pg 22).

* The value of the serialization document-property must be a map of type
map(xs:QName, item()*). If not error XDOO70 (pg. 127) is raised.

* Setting a document-property called base-uri changes the document’s base URI accordingly. See also
category Base URI related (pg. 213).

Errors raised

Error code Description

XCe069 (pg. 218) It is a dynamic error if the properties map contains a key equal to the string “content-
type”.

XD0064 (pg. 221) It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.tfc-editor.org/info/rfc3986) .

XDo070 (pg. 221) It is a dynamic error if a value is assigned to the serialization document property that
cannot be converted into map(xs:QName, item()*) according to the rules in section
“QName handling” of XProc 3.0 (https://xproc.org/) .

2.46 p:sink

Discards all source documents.

Summary

<p:declare-step type="p:sink">
<input port="source" primary="true" content-types="any" sequence="true"/>
</p:declare-step>

The p:sink step discards all documents that appear on its source port.

Primary? |Content |Seq? Description
iEypIes

input true any The document(s) to discard.

Ports:

Description

The p:sink step eats all documents that appear on its source port and makes them disappear.

This step is a bit of a left-over from bygone days. In XProc 1.0, primary output ports had to be connected
to something. So if you didn’t need the output of some step you had to discard its results by using p:sink.
Starting XProc 3.0 this is no longer the case: primary output ports that are not connected discard their
outputs automatically. The only reason to use p:sink nowadays is to make this more explicit.

2.47 p:sleep

Delays the execution of the pipeline.

Summary

<p:declare-step type="p:sleep">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<option name="duration" as="xs:string" required="true"/>

</p:declare-step>

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://xproc.org/

XProc 3.1 Step Reference 128

The p:sleep step delays the execution of the pipeline for a specified time. Source documents are passed
unchanged (like in a p:identity (pg 78) step).

Ports:
Description
source input true any true The source document(s)
result output true any true The resulting document(s). These will be exactly the same as

what appeared on the source port.

Options:

Description

duration xs:string true The duration of the delay, expressed as either:

* A number (an xs:double), indicating a number of seconds. For instance 1
(1 second), 2.5 (2.5 seconds) ot 0.250 (250 milliseconds).

* A string that can be interpreted as an xs:dayTimeDuration. For instance
PT4H5M (4 hours and 5 minutes) or P1D (1 day).

The duration must not be negative, otherwise error XDO036 (pg. 128) is
raised.

Description

Sometimes it is useful to stop executing a pipeline for a little while, for instance when interacting with remote
web servers. The p:sleep step does exactly this: it just stops executing the pipeline for the time as specified
in the duration option.

Additional details

* Some XProc processors will execute steps in parallel when the flow of documents in the pipeline makes
this possible (multi-threaded implementations). The p:sleep step is guaranteed to delay the execution
of the steps that depend on its output only. Whatever happens to other steps (steps that run in parallel
and do not depend on the output of the p:sleep invocation) is implementation-defined and therefore
depends on the XProc processor used.

* A reasonable effort will be made to delay for the specified duration. However, this may not be entirely
accurate.

* p:sleep preserves all document-properties of the document(s) appearing on its source port.

Errors raised

Error code Description
XD0036 (pg. 221) It is a dynamic error if the supplied value of a variable or option cannot be converted to the
required type.

2.48 p:split-sequence

Splits a sequence of documents.

Summary

<p:declare-step type="p:split-sequence">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="matched" primary="true" content-types="any" sequence="true"/>
<output port="not-matched" primary="false" content-types="any" sequence="true"/>
<option name="test" as="xs:string" required="true"/>
<option name="initial-only" as="xs:boolean" required="false" select="false()"/>
</p:declare-step>

The p:split-sequence step takes a sequence of documents on its source port and divides this into two
sequences, based on the evaluation expression in the test option and the value of the initial-only option.

XProc 3.1 Step Reference 129

Ports:
Primary? Content Description
types
source input |true any true The incoming sequence of documents to split.
matched output |true any true The documents from the source port for which the

test option evaluates to true.
If the initial-only option is true, special
processing applies. See the description below.

not-matched output |false any true The documents from the source port for which the

test option evaluates to false.
If the initial-only option is true, special
processing applies. See the description below.

Options:

Name I Default |Description

test xs:string true The XPath boolean expression, as a string, that defines
(XPath matching. It is evaluated with the document to test as
expression) context item (accessible with the dot operator .).

During this evaluation, the position() and last()
functions are available to get the position of the document
in the sequence and the size of the sequence. See also

the Using the position() and last() function (pg. 131)
example.

initial-only |xs:boolean false false If false (default), all documents for which the expression

in the test option is true are considered matched and
appear on the matches port. All documents for which this
is false are considered not matched and appear on the
not-matched port.

If true, special processing applies. See the description
below.

Description

The p:split-sequence step works like a switch in a train marshalling yard. A train with document wagons

approaches the switch. The switchman has instructions to send a wagon in one direction or the other,

depending on the contents of the document. In more technical terms:

The p:split-sequence step takes a sequence of documents on its source port.

For every document, the XPath boolean expression in the test option is evaluated. During this
evaluation, the document is the context item (accessible with the dot operator .).

The position() and last() functions are available to get the position of the document in the sequence
and the size of the sequence (see also the Using the position() and last() function (pg. 131) example).

If the initial-only option is false:

e If the result of the test option evaluation is true, the document appears on the matched port.

e If the result of the test option evaluation is false, the document appears on the not-matched
port.

If the initial-only option is true:

e If the result of the test option evaluation is true, the document appears on the matched port, until
a document appears for which this expression evaluates to false.

* The first document for which the test option evaluation is false and all subsequent documents are sent
to the not-matched port.

In other words: it only writes the initial series of matched documents (which may be empty) to the

matched port. All other documents are written to the not-matched port, irrespective of the outcome of

the test option evaluation.

XProc 3.1 Step Reference 130

Examples

Basic usage

This example defines a sequence of <fruit> documents for the source port and splits them based on their
color attribute. The final p:wrap-sequence (pg. 188) step is only there to be able to show the result as a
single document.

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="lemon" color="yellow"/>
<fruit name="cauliflower" color="white"/>

</p:input>

<p:output port="result"/>

<p:split-sequence test="/*/@color eq 'yellow'"/>
<p:wrap-sequence wrapper="matched-documents"/>
</p:declare-step>
Result document:

<matched-documents>
<fruit color="yellow" name="banana"/>
<fruit color="yellow" name="lemon"/>
</matched-documents>

All the other source documents appear on the not-matched port, as the following example proofs:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="lemon" color="yellow"/>
<fruit name="cauliflower" color="white"/>

</p:input>

<p:output port="result"/>

"

<p:split-sequence test="/*/@color eq 'yellow"'"/>

<p:wrap-sequence wrapper="not-matched-documents">
<p:with-input pipe="not-matched"/>
</p:wrap-sequence>

</p:declare-step>
Result document:

<not-matched-documents>
<fruit color="orange" name="orange"/>
<fruit color="white" name="cauliflower"/>
</not-matched-documents>

Using the initial-only option

This example shows what happens to the Basic usage (pg. 130) example when we set the initial-only
option to true. The second source document (about oranges) does zof match, so this and all subsequent
documents are considered not-matched and sent to the not-matched port. Only the first source document
(about bananas) appears on the matched port.

XProc 3.1 Step Reference 131

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="lemon" color="yellow"/>
<fruit name="cauliflower" color="white"/>

</p:input>

<p:output port="result"/>

<p:split-sequence test="/*/@color eq 'yellow'" initial-only="true"/>

<p:wrap-sequence wrapper="matched-documents"/>
</p:declare-step>
Result document:

<matched-documents>
<fruit color="yellow" name="banana"/>
</matched-documents>

Using the position() and last() function

The following example shows that, during evaluation of the test option, the position() and last()
functions are available to get the position of the document in the sequence and the size of the sequence. It
uses this to match the last document only.

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="lemon" color="yellow"/>
<fruit name="cauliflower" color="white"/>

</p:input>

<p:output port="result"/>

<p:split-sequence test="position() eq last()"/>
<p:wrap-sequence wrapper="matched-documents"/>
</p:declare-step>

Result document:

<matched-documents>
<fruit color="white" name="cauliflower"/>
</matched-documents>

Additional details

* p:split-sequence preserves all document-properties of the document(s) appearing on its source port.

XProc 3.1 Step Reference 132

Errors raised

XCe150 (pg. 220) It is a dynamic error if evaluating the XPath expression in option test on a context document
results in an errot.

2.49 p:store

Stores a document.

Summary

<p:declare-step type="p:store">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="any" sequence="false"/>
<output port="result-uri" primary="false" content-types="application/xml" sequence="false"/>
<option name="href" as="xs:anyURI" required="true"/>
<option name="serialization" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:store step stores the document appearing on its source port to a URIL This document is passed
unchanged to the result port. It outputs the absolute URI of the location of the stored document on the
result-uri port.

Ports:
Primary? Content types qr Description
source input true any false The document to store.
result output |true any false The resulting document. This will be exactly
the same as the document on the source
port.
result-uri output |false application/xml false An XML document consisting of just a

single <c:result> element containing

the absolute URI the document is stored to
(the c prefix here is bound to the http://
www.w3.org/ns/xproc-step namespace).
Example: <c:result xmlns:c="http://
www.w3.org/ns/xproc-step">file:///
some/path/document.xml</c:result>

XProc 3.1 Step Reference 133

Options:

Default Description

href xs :anyURI true The URI to store the document to.

In most cases, p:store will be used to store a
document to disk. An absolute URI for this must start
with file://. For instance, on Windows, file:///
C:/some/path/document.xml (although Windows
uses backslashes (\) to separate path components,
slashes (/) work fine and are more universal). Using a
single slash after file: also works: file:/C:/some/
path/document.xml. An attempt will be made to
create all non-existing folders in the path.

If this value is relative, it is resolved against the base
URI of the element on which this option is specified.
In most cases this will be the static base URI of your
pipeline (the path where the XProc source containing
the p:store step is stored).

serialization map(xs:QName, |false O This option can supply a map with serialization
item()*)? propetties (https://www.w3.org/ TR/ xslt-xquety-

serialization-31/) for storing the document.

If the source document has a serialization

document-property, the two sets of serialization

properties are merged (properties in the document-

property have precedence).

Example:

serialization="map{'indent': true()}"

Description
The p:store step stores the document appearing on its source port to a URL This document is passed

unchanged to the result port. So within the pipeline the step acts as a p:identity (pg. 78) step.
It outputs the absolute URI of the location of the stored document on the result-uri port.

Examples

Basic usage

Whatever input document is passed to the following pipeline, it is stored to disk in a document tmp/x.xml,
relative to where the pipeline is stored. The final p:identity (pg 78) step is just used to show you the
document appearing on the result-uri port.

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:store href="tmp/x.xml"/>
<p:identity>
<p:with-input pipe="result-uri"/>
</p:identity>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">file:/../../x.xml</c:result>

Doing something with what appears on the result-uri port is of course completely optional. If you don’t
attach anything to this port, the <c:result> document will simply disappear into oblivion.

https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/

XProc 3.1 Step Reference 134

Using p:store for writing intermediate results

When developing a pipeline, you often want to take a look at what exactly is flowing through it at a certain
stage. Inserting a (temporary) p:store step is the most easy way to quickly write some intermediate result
to a temporary file on disk for inspection. Since p:store acts like a p:identity (pg. 78) step. nothing
happens to the flow in your pipeline.

<p:store href="file:///my/debug/files/location/stepx.xml"/>

Sometimes you want to keep these temporary storage steps after development. You never know what bugs
will pop up and you might need them again! XProc has static options that you can use for this:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">
<p:option static="true" name="write-debug-documents" select="true()"/> .. <p:store use-when="{$write-debug-
documents}”
href="file:///my/debug/files/location/stepx.xml"/> .. </p:declare-step>

For the production version you set the write-debug-documents static option to false(). This makes the
p:store disappear from the processed code, as if it was never there...

Additional details

* p:store preserves all document-properties of the document(s) appeating on its source port.

Errors raised

Error code Descpon |

XCe050 (pg. 217) It is a dynamic error the file or directory cannot be copied to the specified location.

2.50 p:string-replace

Replaces nodes with strings.

Summary

<p:declare-step type="p:string-replace">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="text xml html" sequence="false"/>
<option name="match" as="xs:string" required="true"/>
<option name="replace" as="xs:string" required="true"/>

</p:declare-step>

The p:string-replace step takes the document appearing on its source port and replaces nodes matching
the match option with a string that is computed using the XPath expression in the replace option.

XProc 3.1 Step Reference 135

Ports:
Type Primary? | Content Description
iTPES
source |input true xml false |The document to replace the nodes in.
html
result |output true text false |The resulting document.
xml
html
Options:
Name Type Req? Description
match xs:string true The XSLT match pattern for the nodes to replace, as a string,
(XSLT
selection
pattern)
replace |xs:string true An XPath expression whose result will replace the nodes matched by the
(XPath match option.
expression) During the evaluation of this expression, the context item is the matched
node (accessible with the dot operator .).

Description

The p:string-replace step does the following:
* It takes the document appearing on its source port and holds the XSLT selection pattern in the match
option against this.
* For each node matched:
* The matched node becomes the context item (accessible with the dot operator .).
* The XPath expression in the replace option is evaluated and the result is turned into a string,
* If the matched node is an attribute, the sa/ue of the attribute is replaced with this string.

e If the document-node is matched, the full document will be replaced by the string (and the result will
therefore be a text document).

e Inall other cases, the full node is replaced by the string.

So this step replaces the matched node(s) with the result of a dynamically evaluated expression. This doesn’t
mean this expression can’t be a constant: see the Basic usage (pg. 135) example). However, it allows you to
do all kinds of nifty calculations, based on where the match is: see the Advanced usage (pg 136) example.

This step replaces matched nodes with strings. If you need to replace matched nodes with full documents,
have a look at the p:replace (pg. 115) step.

Examples

Basic usage

The following example simply replaces the thing’s <contents> element with a (constant) description:
Source document:
<thing>
<contents/>
</thing>
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:string-replace match="thing/contents" replace="'This is a thing of beauty!'"/>

</p:declare-step>

XProc 3.1 Step Reference 136

Result document:
<thing>
This is a thing of beauty!
</thing>

Please notice the single quotes around the value in the replace option. This option must not hold just some
value but an XPath expression. This means that if you need a constant string, you need to write it as an XPath
string, therefore the single quotes.

If the match option matches an attribute, the za/ue of the attribute is replaced:
Source document:

<thing description="notfilledinyet"/>
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:string-replace match="thing/@description" replace="'This is a thing of beauty!'"/>

</p:declare-step>
Result document:

<thing description="This is a thing of beauty!"/>

Advanced usage

The following example fills empty description attributes with a value based on the index/occurrence of the
parent <thing> element and the value of its name attribute:

Source document:

<things>
<thing name="brick" description=""/>
<thing name="mortar" description=""/>
<thing name="door" description="A door"/>
</things>

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:string-replace match="thing/@description[. eq '']" replace=
sibling::thing) + 1 || ': ' || ../@name"/>

Thing ' || count(../preceding-

</p:declare-step>
Result document:

<things>
<thing name="brick" description="Thing 1: brick"/>
<thing name="mortar" description="Thing 2: mortar"/>
<thing name="door" description="A door"/>

</things>

Notice that to be able to perform this trick, the description attribute must already be there! A <thing>
element without such an attribute will not be changed. So if you have content where this is lacking, you’ll
need to prepare it. In this case we use the p:add-attribute (pg 6) step to add a description

attribute to any <thing> element that is lacking one first:

Source document:

<things>
<thing name="brick" description=""/>
<thing name="screw"/>
<thing name="mortar" description=""/>
<thing name="door" description="A door"/>
</things>

XProc 3.1 Step Reference 137

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:add-attribute match="thing[empty(@description)]" attribute-name="description" attribute-value=""/>
<p:string-replace match="thing/@description[. eq '']" replace="'Thing ' || count(../preceding-
sibling::thing) + 1 || ': ' || ../@name"/>

</p:declare-step>
Result document:

<things>
<thing name="brick" description="Thing 1: brick"/>
<thing description="Thing 2: screw" name="screw"/>
<thing name="mortar" description="Thing 3: mortar"/>
<thing name="door" description="A door"/>

</things>

Using p:with-option for the replace option

Options can also be set using the <p:with-option> element. If you use this for the replace option, make
sure that you pass the expression in the replace option as a string. If you don’t, it will get evaluated by the
pipeline, before the invocation of the p:string-replace step, and that is very probably not what you
intend. Here is an example of how to do this right, based on the first example of Advanced usage (pg. 1306):

Source document:

<things>
<thing name="brick" description=""/>
<thing name="mortar" description=""/>
</things>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:string-replace match="thing/@description">
<p:with-option name="replace" select="'"'"'Thing
sibling::thing) + 1 || '': "' || ../@name'"/>
</p:string-replace>

' || count(../preceding-

</p:declare-step>
Result document:

<things>
<thing name="brick" description="Thing 1: brick"/>
<thing name="mortar" description="Thing 2: mortar"/>
</things>
If you accidentally write the p:with-option/@select as the value of the p:string-replace/@replace
attribute in Advanced usage (pg. 136) (an easy and probable mistake to make), the XProc processor will
raise an error:
* The expression in the p:with-option/@select is executed by the pipeline first and results in:
'Thing 1:'
* This is not a valid XPath expression...
* The p:string-replace step tries to evaluate Thing 1: as an expression and fails miserably (but
rightly).

Additional details

* p:string-replace preserves all document-properties of the document(s) appearing on its source port.
There is one exception: if the resulting document contains only text, the content-type document-
property is changed to text/plain and the serialization document-property is removed.

* Ifan attribute called xml:base is added or changed, the base URI of the element is updated accordingly.
See also category Base URI related (pg. 213).

XProc 3.1 Step Reference 138

2.51 p:text-count

Counts the number of lines in a text document.

Summary

<p:declare-step type="p:text-count">

<input port="source" primary="true" content-types="text" sequence="false"/>

<output port="result" primary="true" content-types="application/xml" sequence="false"/>
</p:declare-step>

The p:text-count step counts the number of lines in the text document appearing on its source port and
returns an XML document on its result port containing that number.

Ports:

Content types ? Description
source input true text false The text document to count the lines of.
result output true application/xml false An XML document consisting of a single

<c:result> element containing the number of
lines (the c prefix here is bound to the http://
www.w3.org/ns/xproc-step namespace).
Example: <c:result xmlns:c="http://
www.w3.org/ns/xproc-step">6</c:result>

Description

The p:text-count step simply counts the number of lines in the text document appearing on its source
port. This number is returned on the result port, wrapped in an <c:result> element.

Examples

Basic usage

Assume we have a text document, called 1ines.txt, that looks like this and we want to count the number of
lines using p:text-count:

line 1
line 2
line 3

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="lines.txt"/>
<p:output port="result"/>

<p:text-count/>
</p:declare-step>
Result document:

<c:result xmlns:c="http://www.w3.org/ns/xproc-step">3</c:result>

Additional details

* No document-properties from the document on the source port survives. The resulting document has a
content-type document-property set to application/xml and no base-uri document-property.

* What exactly constitutes a line-end is defined in the XML specification (https://www.w3.org/TR/xml/
#sec-line-ends).

* If the very last character of the source document is a line-end, this is ignored. So it does not count as a
separator between that line and a following line (that contains no characters).

https://www.w3.org/TR/xml/#sec-line-ends
https://www.w3.org/TR/xml/#sec-line-ends

XProc 3.1 Step Reference 139

2.52 p:text-head

Returns lines from the beginning of a text document.

Summary

<p:declare-step type="p:text-head">
<input port="source" primary="true" content-types="text" sequence="false"/>
<output port="result" primary="true" content-types="text" sequence="false"/>
<option name="count" as="xs:integer" required="true"/>

</p:declare-step>

The p:text-head step returns lines from the beginning of a text document.

Ports:
Description
source input true text false |The text document to get the lines from.
result output true text false |The resulting lines.
Options:

Description

count xs:integer true Indicates what p:text-head should do:
* If positive, p:text-head returns the first count lines.
e If zero, p:text-head returns all lines.

* If negative, p:text-head returns all lines exvept the first count lines.

Description

The p:text-head step takes lines from the beginning of the text document appearing on its source port
and returns these lines as a text document on its result port. What exactly happens depends on the value of
the count option.

As you might have guessed there is also a step that returns lines from the exd of a document: p:text-tail
(pg 140).

Examples

Basic usage

Assume we have a text document, called 1ines.txt, that looks like this and we want to get the first 2 lines
using p:text-head:

line 1
line
line
line
line

v wWwN

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="lines.txt"/>
<p:output port="result"/>

<p:text-head count="2"/>
</p:declare-step>
Result document:

line 1
line 2

Setting the count option to @ will simply return the original document (the step now acts like a p: identity
(pg: 78) step).

XProc 3.1 Step Reference 140

Setting the count option to -2 will return all lines exvep? the first two:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="lines.txt"/>
<p:output port="result"/>

<p:text-head count="-2"/>
</p:declare-step>
Result document:

line 3
line 4
line 5

Additional details

* p:text-head preserves all document-properties of the document(s) appearing on its source port.

* What exactly constitutes a line-end is defined in the XML specification (https://www.w3.org/TR/xml/
#sec-line-ends).

* Alllines returned by p:text-head are terminated with a line-end character (line-feed,
j;).

2.53 p:text-join

Concatenates text documents.

Summary

<p:declare-step type="p:text-join">
<input port="source" primary="true" content-types="text" sequence="true"/>
<output port="result" primary="true" content-types="text" sequence="false"/>
<option name="override-content-type" as="xs:string?" required="false" select=""'text/plain'"/>
<option name="prefix" as="xs:string?" required="false" select="()"/>
<option name="separator" as="xs:string?" required="false" select="()"/>
<option name="suffix" as="xs:string?" required="false" select="()"/>
</p:declare-step>

The p:text-join step takes the document(s) appearing on its source port and concatenates these.

Type Primary? |Content |Seq? Description
iEppes

Ports:

source input true text true The sequence of text documents to concatenate.

result output true text false |The resulting text document.

Default Description

override-content- (|xs:string? |false |text/plain |The media type of the result document (the value
type for the result content-type document-property).
This must be a text media type (text/*).

prefix xs:string? |false Q0 A prefix string for the result document (also used
when there are no documents on the source port).

separator xs:string? |[false @) A separator string to insert in between adjacent
documents.

suffix xs:string? |false @) A suffix string for the result document (also used

when there are no documents on the source port).

Description

The p:text-join step takes the document(s) appearing on its source port and concatenates these (in order
of appearance).

Using the separator, prefix and suffix options it is possible to insert additional strings in between the
documents, before the first document, or after the last document.

https://www.w3.org/TR/xml/#sec-line-ends
https://www.w3.org/TR/xml/#sec-line-ends

XProc 3.1 Step Reference 141

Examples

Basic usage

Assume we have three source text documents:
* to-join-01.txt
First document to join!
e to-join-@2.txt
Second document to join! It's getting better..
* to-join-@3.txt
Third document to join! Last but not least!
Straight concatenation using p:text-join looks like this:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="to-join-1.txt"/>
<p:document href="to-join-2.txt"/>
<p:document href="to-join-3.txt"/>

</p:input>

<p:output port="result"/>

<p:text-join/>
</p:declare-step>
Result document:

First document to join!
Second document to join! It's getting better..
Third document to join! Last but not least!

And this is what happens if we use the separator, prefix and suffix options:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:document href="to-join-1.txt"/>
<p:document href="to-join-2.txt"/>
<p:document href="to-join-3.txt"/>

</p:input>

<p:output port="result"/>

<p:text-join separator="=========
" prefix="==START==
" suffix="==END==&i#xA;"/>
</p:declare-step>
Result document:

==START==
First document to join!

Third document to join! Last but not least!
==END==

Notice the use of the line-end character (line-feed,
j;) in the option values. This will cause the inserted
strings to become separate lines.
When there are no documents on the source port, the prefix and suffix options still apply:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<p:empty/>

</p:input>

<p:output port="result"/>

<p:text-join separator="= ==
" prefix="==START==
" suffix="==END==
"/>
</p:declare-step>
Result document:

==START==
==END==

XProc 3.1 Step Reference 142

Additional details

* No document-properties from the source document(s) survive. The joined document has no base-uri
document-property.

* This operation does not require identifying lines. Therefore, no special end-of-line handling is performed.

Errors raised

Error code Description ‘

XCeoo1 (pg. 217) It is a dynamic error if the value of option override-content-type is not a text media type.

XDe079 (pg. 221) It is a dynamic error if a supplied content-type is not a valid media type of the form “
type/subtype+ext ” or “ type/subtype 7.

2.54 p:text-replace

Replace substrings in a text document.

Summary

<p:declare-step type="p:text-replace">
<input port="source" primary="true" content-types="text" sequence="false"/>
<output port="result" primary="true" content-types="text" sequence="false"/>
<option name="pattern" as="xs:string" required="true"/>
<option name="replacement" as="xs:string" required="true"/>
<option name="flags" as="xs:string?" required="false" select="()"/>
</p:declare-step>

The p:text-replace step takes the text document appearing on its source port and replaces substrings
that match a regular expression with a replacement string;

Ports:

Primary? |Content |Seq? Description

source |input true The text document to replace the substrings in.

‘r‘esult ‘output true ‘text ‘false ‘The resulting document. ‘
Options:
efault Description
pattern xs:string |true The XPath regular expression that matches the substrings to
replace.

See the $pattern argument of the XPath function replace()
(https:/ /w3.0org/ TR/xpath-functions-31/#func-replace) for
more details.

replacement xs:string |true The replacement string,

See the $replacement argument of the XPath function
replace() (https:/ /w3.org/ TR/xpath-functions-31/#func-
replace) for more details.

flags xs:string? |false O Flags governing the matching process.

See the description of regular expression flags (https://
www.w3.org/ TR/xpath-functions-31/#flags) in the XPath
standard for more details.

Description

The p:text-replace step is “just” a convenience wrapper around the Xpath replace() (https://w3.org/
TR/xpath-functions-31/#func-teplace) function. This function takes a string and replaces substrings that
match a regular expression with a replacement string, For the p:text-replace step, the input string is the
full document on the source port. The resulting document appears on the result port.

https://w3.org/TR/xpath-functions-31/#func-replace
https://w3.org/TR/xpath-functions-31/#func-replace
https://w3.org/TR/xpath-functions-31/#func-replace
https://w3.org/TR/xpath-functions-31/#func-replace
https://www.w3.org/TR/xpath-functions-31/#flags
https://www.w3.org/TR/xpath-functions-31/#flags
https://w3.org/TR/xpath-functions-31/#func-replace
https://w3.org/TR/xpath-functions-31/#func-replace

XProc 3.1 Step Reference 143

Examples

Basic usage
Assume we have a text document, called lines.txt, that looks like this and we want to replace all t
characters followed by an h or an e with two * characters (case-insensitive):
This is an example of a very simple text file.. But simple is often the best!
Pipeline document:
<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source" href="lines.txt"/>
<p:output port="result"/>

<p:text-replace pattern="t[h|e]" replacement="**" flags="i"/>
</p:declare-step>
Result document:

is is an example of a very simple **xt file.. But simple is ofn **e best!

Additional details

* p:text-replace preserves all document-properties of the document(s) appearing on its source port.

* This operation does not require identifying lines. Therefore, no special end-of-line handling is performed.

Errors raised

XC0147 (pg. 220) It is a dynamic error if the specified value is not a valid XPath regular expression.

2.55 p:text-sort

Sorts lines in a text document.

Summary

<p:declare-step type="p:text-sort">

<input port="source" primary="true" content-types="text" sequence="false"/>

<output port="result" primary="true" content-types="text" sequence="false"/>

<option name="case-order" as="xs:string?" required="false" select="()" values="('upper-first', 'lower-
first')"/>

<option name="collation" as="xs:string" required="false" select=""'https://www.w3.0rg/2005/xpath-functions/
collation/codepoint'"/>

<option name="lang" as="xs:language?" required="false" select="()"/>

<option name="order" as="xs:string" required="false" select="'ascending
>

<option name="sort-key" as="xs:string" required="false" select=""'."'"/>

<option name="stable" as="xs:boolean" required="false" select="true()"/>
</p:declare-step>

values="('ascending', 'descending')"/

The p:text-sort step sorts lines in the text document appearing on its source port.

XProc 3.1 Step Reference

144

Ports:

Type

Primary?

Content

types

Seq?

Description

source input true

text

false

The text document to sort the lines of.

‘r‘esult ‘output true

Options:

‘text

‘false

Default

‘The resulting document. ‘

case-order xs:string?

collation xs:string

false

false

0]

https://
www.w3.0rg/2005/
xpath-functions/
collation/
codepoint

Description

Defines whether upper-case characters are

considered to come before or after lower-case
characters. Must have a value upper-first or
lower-first.

If not provided, its value is language-dependent.

This option is only used if no value is available
for the collation option.

The collation to use for sorting. The only
collation that is always supported is the
Unicode codepoint collation (https://
www.w3.0rg/2005/xpath-functions/
collation/codepoint/). This is also the
default value for this option. Whether any other
collations are supported is implementation-
defined and therefore dependent on the XProc
processor used.

lang xs:language?

false

0]

The language to sort the lines for. This
influences, for instance, the order of accented
characters. Its default value is implementation-
defined and therefore dependent on the XProc
processor used.

A value for the lang option must be a valid
language code according to RFC 4646 (tags for
identifying languages) (https:/ /www.ictf.org/
tfc/rfc4646.txt). For instance: en-us or n1-nl.
This option is only used if no value is available
for the collation option.

order xs:string

false

ascending

The sort order, either ascending (default) or
descending.

sort-key xs:string
(XPath

expression)

false

An XPath expression that results in the string
to sort the lines on. It is evaluated for each line,
with the line to sort (as a string) as context item
(accessible with the dot operator .).

During this evaluation, the position() and
last() functions are available to get the
position of the line in the document and the
number of lines. See Reversing the line order
(pg: 145) for an example of using these
functions here.

stable Xs:boolean

false

true

This option tells the sorting algorithm what to
do with lines with same sorting key. If its value
is true (default), these lines are retained in their
original order. If false, there is no need to this
and the algorithm may change their order (but
not necessarily so).

Description

The p:text-sort step takes the text document appeating on its source port and turns this into lines. These
lines are then sorted according to the values of the step options. This sort process is the same as described for
the XSLT xsl:sort (https://www.w3.org/TR/xslt-30/#xsl-sort) instruction. The result appears on

the result port.

https://www.w3.org/2005/xpath-functions/collation/codepoint/
https://www.w3.org/2005/xpath-functions/collation/codepoint/
https://www.w3.org/2005/xpath-functions/collation/codepoint/
https://www.ietf.org/rfc/rfc4646.txt
https://www.ietf.org/rfc/rfc4646.txt
https://www.ietf.org/rfc/rfc4646.txt
https://www.w3.org/TR/xslt-30/#xsl-sort

XProc 3.1 Step Reference 145

Examples

Basic usage

Assume we have a text document, called 1ines.txt, that looks like this and we want to sort the lines using
p:text-sort:

XProc steps rock!
An important addition to our XML processing toolkit.
What a joy!

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="lines.txt"/>
<p:output port="result"/>

<p:text-sort/>
</p:declare-step>
Result document:
An important addition to our XML processing toolkit.

What a joy!
XProc steps rock!

Reversing the line order

This example is not very useful in itself, but it shows the use of the position() and last() function in
the sort-key option. We set this option to last() - position(), which has the effect of reversing the line
ordet.

Source document (1ines-2.txt):

line 1
line 2
line 3

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="lines-2.txt"/>
<p:output port="result"/>

<p:text-sort sort-key="last() - position()"/>
</p:declare-step>
Result document:

line 3
line 2
line 1

Additional details

* p:text-sort preserves all document-properties of the document(s) appearing on its source port.

* What exactly constitutes a line-end is defined in the XML specification (https://www.w3.otg/TR/xml/
#sec-line-ends).

e All lines returned by p:text-sort are terminated with a line-end character (line-feed,
j).

https://www.w3.org/TR/xml/#sec-line-ends
https://www.w3.org/TR/xml/#sec-line-ends

XProc 3.1 Step Reference 146

Errors raised

Error code Description

XC0098 (pg. 218) It is a dynamic error if a dynamic XPath error occurred while applying sort-key to a line.

XC0099 (pg. 218) It is a dynamic error if the result of applying sort-key to a given line results in a sequence
with more than one item.

2.56 p:text-tail

Returns lines from the end of a text document.

Summary

<p:declare-step type="p:text-tail">
<input port="source" primary="true" content-types="text" sequence="false"/>
<output port="result" primary="true" content-types="text" sequence="false"/>
<option name="count" as="xs:integer" required="true"/>

</p:declare-step>

The p:text-tail step returns lines from the end of a text document.

Ports:

input true The text document to get the lines from.

output true The resulting lines.

Options:

Description

xs:integer true Indicates what p:text-tail should do:
* If positive, p:text-tail returns the last count lines.
e If zero, p:text-tail returns all lines.

* If negative, p:text-tail returns all lines exvep? the last count lines.

Description

The p:text-tail step takes lines from the end of the text document appearing on its source port and
returns these lines as a text document on its result port. What exactly happens depends on the value of the
count option.

As you might have guessed there is also a step that returns lines from the beginning of a document: p:text-
head (pg. 139).

Examples

Basic usage

Assume we have a text document, called 1ines.txt, that looks like this and we want to get the last 2 lines
using p:text-tail:

line 1
line
line
line
line

v s wWwN

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="lines.txt"/>
<p:output port="result"/>

<p:text-tail count="2"/>

</p:declare-step>

XProc 3.1 Step Reference 147

Result document:

line 4
line 5

Setting the count option to @ will simply return the original document (the step now acts like a p:identity

(pg. 78) step).
Setting the count option to -2 will return all lines exvep? the last two:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="lines.txt"/>
<p:output port="result"/>

<p:text-tail count="-2"/>
</p:declare-step>
Result document:

line 1
line 2
line 3

Additional details

* p:text-tail preserves all document-properties of the document(s) appearing on its source port.

* What exactly constitutes a line-end is defined in the XML specification (https://www.w3.org/TR/xml/
#sec-line-ends).

e Alllines returned by p:text-tail are terminated with a line-end character (line-feed,
).

2.57 p:unarchive

Extracts documents from an archive file.

Summary

<p:declare-step type="p:unarchive">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<option name="exclude-filter" as="xs:string*" required="false" select="()"/>
<option name="format" as="xs:QName?" required="false" select="()"/>
<option name="include-filter" as="xs:string*" required="false" select="()"/>
<option name="override-content-types" as="array(array(xs:string))?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="relative-to" as="xs:anyURI?" required="false" select="()"/>
</p:declare-step>

The p:unarchive extracts document from an archive file (for instance a ZIP file) and returns these on its
result port.

https://www.w3.org/TR/xml/#sec-line-ends
https://www.w3.org/TR/xml/#sec-line-ends

XProc 3.1 Step Reference

148

Ports:

Type

Primary?

Content
types

Seq?

Description

source input true any false The archive to extract the documents from.
result ‘output true ‘any ‘tr‘ue ‘The extracted documents. ‘
Options:

exclude-filter

xs:string* (XPath

regular expression)

Reg? Default Description

false

O

A sequence of XPath regular expressions (as
strings) that determine which files in the archive
are not extracted. See “Determining which files
to extract” on page 149.

format

XS :QName?

false

The format of the archive file on the source
port:

e Ifits value is zip, the p:unarchive step
expects a ZIP archive on the source port.

e If absent or the empty sequence, the
p:unarchive step tries to guess the
archive file format. The only format that
this step is required to recognize and
handle is ZIP.

* Whether any other archive formats can
be handled and what their names (values
for this option) are depends on the XProc
processor used.

include-filter

xs:string* (XPath
regular expression)

false

O

A sequence of XPath regular expressions (as
strings) that determine which files in the archive
are extracted. See “Determining which files to
extract” on page 149.

override-content-
types

array(array
(xs:string))?

false

9]

Use this to override the content-type
determination for the extracted files (the value
of their content-type document-property).
This mechanism works the same as for the
p:archive-manifest (pg 18) step. See
Overriding content types (pg. 151) for an
example.

parameters

map (xs :QName,
item()*)?

false

9]

Parameters used to control the document
extraction. The XProc specification does not
define any parameters for this option. A specific
XProc processor might define its own.

relative-to

XS :anyURI?

false

O

This option can be used to explicitly set the
base-uri document-property of the extracted
documents. See “The base URI of the extracted
files” on page 149

Description

The p:unarchive step allows you to extract one or more documents from an archive (for instance a ZIP

file). The result will be a sequence of the extracted documents on the result port.

* You can specify exactly which documents to extract or not to extract using the include-filter and
exclude-filter options. See “Determining which files to extract” on page 149.

* Sometimes it is important to specify the exact base URI of the extracted documents for subsequent
steps. You can do this using the relative-to option. See “The base URI of the extracted files” on

page 149.

* Although probably rare, it is also possible to control the content type (MIME type) of the extracted
documents, using the override-content-types option. See Overriding content types (pg. 151) for

an example.

Archives come in many formats. The only format the p:unarchive step is required to handle is ZIP.
However, depending on the XProc processor used, other formats may also be processed.

XProc 3.1 Step Reference 149

Determining which files to extract

The include-filter and exclude-filter options determine which documents to extract. Both option
must be a sequence of zero or more XPath regular expressions, as strings. For an example see Excluding
documents (pg. 150). Basic operation:

* The paths of the documents 7 the archive are matched against the regular expressions.
* A document must be included and not excluded.

* Anempty include-filter option means: @/ documents are included. An empty exclude-filter
option means: 70 documents are excluded.

In more detail:
* Tirst, the include-filter option is processed:
e Ifitis empty (its value is the empty sequence ()), 2/ documents in the archive are included.

* Otherwise, the path of every document 7 the archive is matched against the list of regular
expressions in the include-filter option (like in matches($path-in-archive, $regular-
expression)). If one of the regular expression matches, the document is included, otherwise it is
excluded.

* Now the exclude-filter option is processed against the resulting list of entries:
e Ifitis empty (its value is the empty sequence ()), #o further documents excluded.

* Otherwise, the path of every document 7 the archive is matched against the list of regular
expressions in the exclude-filter option (like in matches($path-in-archive, $regular-
expression)). If one of the regular expression matches, the document is excluded, otherwise it is
included.

If the value for one of these options is a sequence with just a single values, you can set this by attribute:
<p:unarchive exlude-filter="\.xml$"/>

However, if more than one value is involved you zust use <p:with-option> (providing a sequence with

multiple values by attribute is not possible):

<p:unarchive>
<p:with-option name="exclude-filter" select="("'\.xml$"', '\.jpg$')"/>
</p:unarchive>

The base URI of the extracted files

The relative-to option can be used to specify the base-uri document-property of the extracted
documents:

* Ifthe relative-to option is not specified, the base-uri document-property of an extracted document
is the full URI of the archive followed by the path of the document 7 the archive. For instance:
file:///path/to/archive/archive.zip/path/in/archive/test.xml.

* Ifarelative-to option is specified, it must be a valid URI The base-uri document-property of
an extracted document is this URI followed by the path of the document 7z the archive. For instance,
assume we’ve set the relative-to option to file:///my/documents/: file:///my/documents/
path/in/archive/test.xml.

The Basic usage (pg. 149) and most other examples show what happens if you don’t specify a relative-
to option. The Using relative-to (pg. 151) example shows what happens if you do.

Examples

Basic usage

Assume we have a simple ZIP archive with two entties:
e An XML file in the root called reference.xml
* Animage in an images/ sub-directory called logo.png.

XProc 3.1 Step Reference 150

The following pipeline uses p:unarchive to extract its contents. The <p:for-each> construction after the
p:unarchive creates an overview of what was extracted. The actual extracted files are discarded.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:unarchive/>

<p:for-each>
<p:identity>
<p:with-input exclude-inline-prefixes="#all">
<unarchived-file href="{p:document-property(/, 'base-uri')}" content-type="{p:document-
property(/, 'content-type')}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="unarchived-files"/>

</p:declare-step>
Resulting overview of the extracted files:

<unarchived-files>
<unarchived-file content-type="image/png" href="file:/../../test.zip/images/logo.png"/>
<unarchived-file content-type="application/xml" href="file:/../../test.zip/reference.xml"/>
</unarchived-files>

Excluding documents

This example uses the same ZIP archive as Basic usage (pg: 149). The exclude-filter option excludes
the entries ending with .xm1:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:unarchive exclude-filter="\.xml$"/>

<p:for-each>
<p:identity>
<p:with-input exclude-inline-prefixes="#all">
<unarchived-file href="{p:document-property(/, 'base-uri')}" content-type="{p:document-
property(/, 'content-type')}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="unarchived-files"/>

</p:declare-step>
Resulting overview of the extracted files:

<unarchived-files>
<unarchived-file content-type="image/png" href="file:/../../test.zip/images/logo.png"/>
</unarchived-files>

The following example excludes all documents from the images sub-directory:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:unarchive exclude-filter=""images/"/>

<p:for-each>
<p:identity>
<p:with-input exclude-inline-prefixes="#all">
<unarchived-file href="{p:document-property(/, 'base-uri')}" content-type="{p:document-
property(/, 'content-type')}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="unarchived-files"/>

</p:declare-step>

XProc 3.1 Step Reference 151

Resulting overview of the extracted files:

<unarchived-files>
<unarchived-file content-type="application/xml" href="file:/../../test.zip/reference.xml"/>
</unarchived-files>

Using relative-to

This example uses the same ZIP archive as Basic usage (pg. 149). The following pipeline explicitly sets the
base part of the URIs for the extracted documents to file:///my/documents/:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:unarchive relative-to="file:///my/documents/"/>

<p:for-each>
<p:identity>
<p:with-input exclude-inline-prefixes="#all">
<unarchived-file href="{p:document-property(/, 'base-uri')}" content-type="{p:document-
property(/, 'content-type')}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="unarchived-files"/>

</p:declare-step>
Resulting overview of the extracted files:

<unarchived-files>
<unarchived-file content-type="image/png" href="file:///my/documents/images/logo.png"/>
<unarchived-file content-type="application/xml"
href="file:///my/documents/reference.xml"/>
</unarchived-files>

Overriding content types

This example uses the same ZIP archive as Basic usage (pg. 149). The following pipeline explicitly sets the
content type for .png files to application/octet-stream:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:unarchive>
<p:with-option name="override-content-types" select="[['\.png$', 'application/octet-stream']]1"/>
</p:unarchive>

<p:for-each>
<p:identity>
<p:with-input exclude-inline-prefixes="#all">
<unarchived-file href="{p:document-property(/, 'base-uri')}" content-type="{p:document-
property(/, 'content-type')}"/>
</p:with-input>
</p:identity>
</p:for-each>
<p:wrap-sequence wrapper="unarchived-files"/>

</p:declare-step>
Resulting overview of the extracted files:

<unarchived-files>
<unarchived-file content-type="application/octet-stream"
href="file:/../../test.zip/images/logo.png"/>
<unarchived-file content-type="application/xml" href="file:/../../test.zip/reference.xml"/>
</unarchived-files>

More information about how this mechanism works can be found in the description of the p:archive-
manifest (pg. 18) step.

XProc 3.1 Step Reference 152

Additional details

* No document-properties from the document on the source port sutrvive.

* A relative value for the relative-to option gets de-referenced against the base URI of the element in
the pipeline it is specified on. In most cases this will be the path of the pipeline document.

* Paths in an archive are always relative. However, depending on how archives are constructed, a path in
an archive can be with or without a leading /. Usually it will be without. For archives constructed by
p:archive (pg. 11) no leading slash will be present.

* The only format this step is required to handle is ZIP. The ZIP format definition can be found here
(https:/ /pkwate.cachefly.net/webdocs/ casestudies/ APPNOTE. TXT).

Errors raised

Error code Description

XCe079 (pg. 218) It is a dynamic error if the map parameters contains an entry whose key is defined by the
implementation and whose value is not valid for that key.

XCo085 (pg. 218) It is a dynamic error if the format of the archive does not match the specified format, cannot
be understood, determined and/ot processed.

XCe120 (pg 219) It is a dynamic error if the relative-to option is not present and the document on the
source port does not have a base URL

XC0147 (pg. 220) It is a dynamic error if the specified value is not a valid XPath regular expression.

2.58 p:uncompress

Uncompresses a document.

Summary

<p:declare-step type="p:uncompress">
<input port="source" primary="true" content-types="any" sequence="false"/>
<output port="result" primary="true" content-types="any" sequence="false"/>
<option name="content-type" as="xs:string" required="false" select="'application/octet-stream'"/>
<option name="format" as="xs:QName?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:uncompress step expects on its source port a compressed (usually binary) document. It outputs an
uncompressed version of this document on its result port.

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

XProc 3.1 Step Reference 153

Ports:
Type Primary? |Content |Seq? Description
types
source input true any false The document to uncompress
result ‘output true ‘any ‘-False ‘The resulting uncompressed document. ‘
Options:
Default Description
content-type |xs:string false application/ Specifies the media type for the resulting
octet-stream uncompressed document that appears on

the result port (and therefore the value of
its content-type document-property).

If not specified, this media type will
become application/octet-stream

(the generic media type for “any binary
document”).

format XS :QName? false @) Specifies the compression format of the
source document:

e Ifits value is the empty sequence
(default), p:uncompress tries to
guess this format by inspecting
the document’s content-type
document-property and/or inspecting
its contents. How this is done
is implementation-defined and
therefore dependent on the XProc
processor used. A GZIP (https://
datatracket.ietf.org/doc/html/
rfc1952) compressed document
should be recognized. Whether any
other format is recognized is also
implementation-defined.

e Ifits value is gzip the step
expects a document compressed
according to the GZIP (https://
datatracket.ietf.org/doc/html/
rfc1952) specification.

e Support for any other value is
implementation-defined and therefore
dependent on the XProc processor

used.
parameters map (xs :QName, false Q) Parameters controlling the uncompression.
item()*)? Keys, values and their meaning depend on

the value of the method option and the
XProc processor used.

Description

The p:uncompress step uncompresses the document appearing on its source port.

To do this it first determines the compression format (see the description of the format option). Usually
this will be GZIP (https://datatracket.ietf.org/doc/html/rfc1952), the only comptession format an XProc
processor is required to support.

After the uncompression, the result is interpreted according to the value of the step’s content-type option.
If nothing is specified, the resulting document will just flow out as a generic binary document (media type
application/octet-stream). However, if an explicit media type is specified, for instance text/xml,

the result is interpreted as such and cast to this type. Of course this must be possible, if not error XC0201
(pg 154) is raised.

https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952

XProc 3.1 Step Reference 154

Additional details

* p:uncompress preserves all document-properties of the document(s) appeating on its source port.

Exception is the content-type document-property which is updated accordingly.

Errors raised

Error code Description

XCe079 (pg. 218) It is a dynamic error if the map parameters contains an entry whose key is defined by the
implementation and whose value is not valid for that key.

XC0201 (pg. 220) It is a dynamic error if the <p:uncompress> step cannot perform the requested content-type
cast.

XC0202 (pg. 220) It is a dynamic error if the compression format cannot be understood, determined and/or
processed.

XD0079 (pg. 221) It is a dynamic error if a supplied content-type is not a valid media type of the form “

”»

type/subtype+ext ” or “ type/subtype

2.59 p:unwrap

Unwraps elements in a document.

Summary

<p:declare-step type="p:unwrap">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="text xml html" sequence="false"/>
<option name="match" as="xs:string" required="false" select=""'/*""/>
</p:declare-step>

The p:unwrap step unwraps element nodes, specified by an XSLT selection pattern, from the document
appearing on its source port. Unwrapping means: remove the matched element (including any attributes),
but keep all its children.

Ports:
Description
source input true xml false |The document to unwrap the matched elements in.
html
result output true text false |The resulting document.
xml
html
Options:
Reqp Default Description
match xs:string |false /* The XSLT match pattern for the nodes to unwrap, as a string, This
(XSLT must match element nodes (ot the document-node). If any other kind
selection of node is matched, error XC@823 (pg 1506) is raised.
pattern)
Description

The p:unwrap step takes the XSLT match pattern in the match option and holds this against the document
appeating on its source port. This pattern must match element nodes (or the document-node). Matching
elements are unwrapped: removed (including any attributes) but their child nodes remain. The resulting
document appear on the result port.

If you want to remove an element including child nodes you need p:delete (pg. 306).

XProc 3.1 Step Reference 155

Examples

Basic usage

The following example unwraps all <name> elements. Note that nested <name> elements are also unwrapped.

Source document:

<person>
<name>
<firstname>John</firstname>
<lastname>Doe</lastname>
<spouse>
<name>
<firstname>Clara</firstname>
<lastname>Doe</lastname>
</name>
</spouse>
</name>
</person>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:unwrap match="name"/>
</p:declare-step>
Result document:

<person>
<firstname>John</firstname>
<lastname>Doe</lastname>
<spouse>
<firstname>Clara</firstname>
<lastname>Doe</lastname>
</spouse>
</person>

Additional details

* In most cases, p:unwrap preserves all document-properties of the document appearing on its source
port.

* TFor documents consisting of just a root-element containing text: if this root-element is unwrapped, the
result is a document-node with a single text node child. This changes the result document’s content-type
(its content-type property) to text/plain. The serialization document-property, if present, is
removed.

* Ifadocument consisting of only an empty root-element is unwrapped, the result will be a document-
node without any children. The result document’s content type does not change if you do this.

* If you unwrap the document-node (set the match property to /) nothing will happen.

e It’s possible to produce non well-formed XML using this step. Unwrapping the root-element from the
following document (<p:unwrap match="/*"/> or simply <p:unwrap/>) produces a result with just a
single comment node, which is not well-formed:

<!-- Some comment -->
<root/>

XProc does not care about this, it keeps calm and carries on. However, writing this result to disk might
not be what you expect.

XProc 3.1 Step Reference 156

Errors raised

XCe023 (pg. 217) It is a dynamic error if the selection pattern matches a wrong type of node.

2.60 p:uuid

Injects UUIDs into a document.

Summary

<p:declare-step type="p:uuid">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="text xml html" sequence="false"/>
<option name="match" as="xs:string" required="false" select="'/*'"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="version" as="xs:integer?" required="false" select="()"/>
</p:declare-step>

The p:uuid step takes the document appearing on its source port and replaces nodes matching the match
option with a UUID.

Ports:
Primary? ? Description
source input true xml false |The document to inject the UUIDs in.
html
result output true text false |The resulting document.
xml
html
Options:
Description
match xs:string false /* The XSLT match pattern for the nodes to replace with the
(XSLT selection UUID.
pattern)
parameters map(xs:QName, false O Parameters used to control the UUID generation. The
item()*)? XProc specification does not define any parameters for this

option. A specific XProc processor might define its own.

version xs:integer? false O The UUID version to use for computing its value. Its
default value is implementation-defined and therefore
dependent on the XProc processor used.

Version 4 UUIDs are always supported. Whether any other
versions are supported is also implementation-defined.

Description

UUID stands for Universally Unique Identifier. It is also known as GUID, which stands for Globally Unique
Identifier. A UUID is a 128-bit value that is, for all practical purposes, worldwide unique. It is usually
written as a 32-character hexadecimal value in a pattern using hyphens, for example f81d4fae-7dec-11d0-
a765-00a0c91e6bf6. The Wikipedia page about UUIDs is here (https://en.wikipedia.org/wiki/
Universally_unique_identifier).

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

XProc 3.1 Step Reference 157

The p:uuid step does the following:

* It computes a single UUID, using the version and parameters options. This UUID is used for all
replacements (so all replacements get the saze value).

* It takes the document appearing on its source port and holds the XSLT selection pattern in the match
option against this.

* For all matched nodes:
* If the matched node is an attribute, the va/ue of the attribute is replaced with the UUID.

e If the document-node is matched, the full document will be replaced by UUID (and the result will
therefore be a text document).

* Inall other cases, the full node is replaced by the UUID.

Examples

Basic usage

The following example replaces the text inside the <uuid> elements with a generated UUID:
Source document:
<thing>
<uuid>UUID</uuid>

<uuid>UUID</uuid>
</thing>

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:uuid match="/thing/uuid/text()"/>
</p:declare-step>
Result document:
<thing>
<uuid>65bboebe-abc3-4455-bbb6-8bf544f9a50a</uuid>

<uuid>65bb@ebe-abc3-4455-bbb6-8bf544f9a50a</uuid>
</thing>

Please notice that the UUIDs ate identical, the same value is used for every replacement.

If the match option matches an attribute, the za/ue of the attribute is replaced:
Source document:

<thing uuid=""/>
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:uuid match="/thing/@uuid"/>
</p:declare-step>
Result document:

<thing uuid="51fab432-3bcb-4377-a3bc-0830ae3b82a0" />

Additional details

* p:uuid preserves all document-properties of the document(s) appearing on its source port.
There is one exception: if the resulting document contains only text, the content-type document-
property is changed to text/plain and the serialization document-property is removed.

e If an attribute called xml:base is added or changed, the base URI of the element is updated accordingly.
See also category Base URI related (pg. 213).

XProc 3.1 Step Reference 158

Errors raised

XCe060 (pg. 217) It is a dynamic error if the processor does not support the specified version of the UUID
algorithm.

2.61 p:validate-with-dtd

Validates a document using a DTD.

Summary

<p:declare-step type="p:validate-with-dtd">

<input port="source" primary="true" content-types="xml html" sequence="false"/>

<output port="result" primary="true" content-types="xml html" sequence="false"/>

<output port="report" primary="false" content-types="xml json" sequence="true"/>

<option name="assert-valid" as="xs:boolean" required="false" select="true()"/>

<option name="report-format" as="xs:string" required="false" select=""xvrl'"/>

<option name="serialization" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:validate-with-dtd step validates the document appearing on the source port using DTD (https://
en.wikipedia.org/wiki/Document_type_definition) (Document Type Definition) validation. The result port
emits a copy of the source document, possibly augmented.

Ports:

Type Primary? |Content |Seq? Descriptic
iEypes

source input true xml false The document to validate.
html

result |output true xml false |A copy of the document that appeared on the source port.
html If validation was successful, the output may have been

augmented by the DTD. (For example, default attributes
may have been added).

report output false xml true A report that describes the validation results, both for valid
json and invalid source documents. The format for this report is
determined by the report-format option.

When the assert-valid option is true and the document

is invalid, nothing will appear on this port because error
XC0210 (pg. 160) is raised.

Options:

Default Description

assert-valid xs:boolean false true Determines what happens if the document is znvalid:
e Iftrue, error XC0210 (pg. 160) is raised.
* If false, the step always succeeds. The validity of

the document must be determined by inspecting
the document that appears on the report port.

report-format xs:string false xvrl The format for the document on the report port. The
value xvrl (default) will always work: the report will be
in XVRL (https://spec.xproc.org/master/head/xvtl/)

(Extensible Validation Report Language).

Whether any other formats are supported is

implementation-defined and therefore dependent on
the XProc processor used.

serialization map(xs:QName, |false O This option can supply a map with serialization

item()*)? propetties (https://www.w3.org/ TR/ xslt-xquety-
serialization-31/) for serializing the document on the
source port, before it is re-parsed for validation (see
the description for an explanation).

If the source document has a serialization
document-property, the two sets of serialization
properties are merged (properties in the document-
property have precedence).

https://en.wikipedia.org/wiki/Document_type_definition
https://en.wikipedia.org/wiki/Document_type_definition
https://spec.xproc.org/master/head/xvrl/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xslt-xquery-serialization-31/

XProc 3.1 Step Reference 159

Description

The p:validate-with-dtd step validates the document appeating on the source port using DTD (https://
en.wikipedia.org/wiki/Document_type_definition) (Document Type Definition) validation. This works a little
differently than the other validation techniques: validation takes place by first serializing the document (as if
written to disk) and subsequently re-parse it using a validating XML parser. The DTD (or a link to it) must be
supplied by the source document itself or by the serialization process.

The serialization options (whether provide by the serialization document-property or the
serialization option) must include at least a doctype-system property. Without a system identifier, the
document cannot be successfully parsed with a validating parser.

Examples

Basic usage (valid source document)

Assume we have an input document, called input-valid.xml, that looks like this:

<address>
<first>Douglas</first>
<last>Adams</last>
<phone>42</phone>
</address>

We want to validate this document using the following DTD, called example.dtd:

<!ELEMENT address (first, last, phone)>

<IATTLIST address type CDATA #IMPLIED>

<IELEMENT first (#PCDATA)>

<IELEMENT last (#PCDATA)>

<!ELEMENT phone (#PCDATA)>
To perform this validation using the p:validate-with-dtd step, we need to link the DTD to the document
using the doctype-system serialization property. The output of the example is what is returned on the

report port.
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-dtd serialization="map{'doctype-system' : 'example.dtd'}" name="validate"/>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.4+02:00</timestamp>
<document href="file:/../../input-valid.xml"/>
<validator name="org.apache.xerces.jaxp.SAXParserImpl$JAXPSAXParser"/>
</metadata>
</report>

Basic usage (invalid source document)

Using the same DTD as in Basic usage (valid source document) (pg. 159), we’re now going to validate
an 7nvalid document (called input-invalid.xml). Since we want to have a look at what comes out of the
report port, we have to set the assert-valid option to false.
<address>
<FIRST>Douglas</FIRST>
<last>Adams</last>

<phone>42</phone>
</address>

Performing this validation using the p:validate-with-dtd step returns the following on the report port:

https://en.wikipedia.org/wiki/Document_type_definition
https://en.wikipedia.org/wiki/Document_type_definition

XProc 3.1 Step Reference 160

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-dtd assert-valid="false" serialization="map{'doctype-
system' : ‘'example.dtd'}" name="validate"/>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.62+02:00</timestamp>
<document href="file:/../../input-invalid.xml"/>
<validator name="org.apache.xerces.jaxp.SAXParserImpl$JAXPSAXParser"/>
</metadata>
<detection severity="fatal-error">
<message>SAXParseException: Element type "FIRST" must be declared.</message>
</detection>
</report>

Additional details

* If validation fails (and assert-valid is false), all document-properties on the source port are
preserved on the result port. If validation succeeds, only the base-uri and serialization
document-properties are preserved, the content-type document-property will be application/xml.

* The document appearing on the report port only has a content-type property. It has no other
document-properties (also no base-uri).

Errors raised

Error code Description

XCe210 (pg 221) It is a dynamic error if the assert-valid option on <p:validate-with-dtd> is true and
the input document is not valid.

2.62 p:validate-with-json-schema

Validates a JSON document using JSON schema.

Summary

<p:declare-step type="p:validate-with-json-schema">
<input port="source" primary="true" content-types="json" sequence="false"/>
<output port="result" primary="true" content-types="json" sequence="false"/>
<input port="schema" primary="false" content-types="json" sequence="false"/>
<output port="report" primary="false" content-types="xml json" sequence="true"/>
<option name="assert-valid" as="xs:boolean" required="false" select="true()"/>
<option name="default-version" as="xs:string?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="report-format" as="xs:string" required="false" select="'xvrl'"/>
</p:declare-step>

The p:validate-with-json-schema step validates the JSON document appearing on the source port
using JSON Schema (https://json-schema.otg/draft/2020-12/json-schema-validation) validation. The J[SON
schema (a JSON document itself) is supplied through the schema port. The result port emits a copy of the
source document.

https://json-schema.org/draft/2020-12/json-schema-validation

XProc 3.1 Step Reference 161

Ports:
Primary? |Content |Seq? Description
iTPES
source input true json false The document to validate.
result |output true json false |A verbatim copy of the document that appeared on the
source port.
schema input false json false |The JSON schema to validate against.
report output false xml true A report that describes the validation results, both for valid
json and invalid source documents. The format for this report is

determined by the report-format option.

When the assert-valid option is true and the document
is invalid, nothing will appear on this port because error
XC0165 (pg. 163) is raised.

Options:

Name eqr Default Description

assert-valid xs:boolean false |true Determines what happens if the document is nvalid:

e If true, error XCO165 (pg. 163) is raised.

e If false, the step always succeeds. The validity
of the document must be determined by
inspecting the document that appears on the
report port.

default-version xs:string? false @) Specifies the schema version if the schema itself
doesn’t specify one itself.

If both the schema doesn’t specify a version

and this option is empty, the schema version is
implementation-defined and therefore dependent
on the XProc processor used.

parameters map (xs :QName, false @) Parameters controlling the validation. See
item()*)? “Validation parameters” on page 162 for more
information.
report-format xs:string false xvrl The format for the document on the report port.

The value xvrl (default) will always work: the
report will be in XVRL (https://spec.xproc.otg/
master/head/xvtl/) (Extensible Validation Report
Language).

Whether any other formats are supported is
implementation-defined and therefore dependent
on the XProc processor used.

Description

The p:validate-with-json-schema step applies JSON Schema (https://json-schema.org/draft/2020-12/
json-schema-validation)validation to the JSON document appearing on the source port. The JSON schema
is supplied using the schema port. The outcome of the step, what appears on the result port, is a verbatim
copy of the source document.

https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://json-schema.org/draft/2020-12/json-schema-validation
https://json-schema.org/draft/2020-12/json-schema-validation

XProc 3.1 Step Reference 162

Validation parameters

The p:validate-with-json-schema step has a parameters port of datatype

map(xs:QName, item()*)?. This (optional) map passes additional parameters for the validation process to
the step:

* The parameters in this map, their values and semantics are implementation-defined and therefore
dependent on the XProc processor used.

* A special entry with key c:compile (the ¢ namespace prefix is bound to the standard XProc namespace
http://www.w3.org/ns/xproc-step) is reserved for parameters for the schema compilation (it
applicable). The value of this key must be a map itself.

* If the report-format option is set to xvrl (default): Any entries with keys in the xvrl namespace
(http://www.xproc.org/ns/xvrl) are passed as parameters to the process that generates the XVRL
(https://spec.xproc.org/mastet/head/xvtl/) report appearing on the report port. All standard XVRL
generation patameters (https://spec.xproc.otg/master/head/xvtl/#xvtl-generation) are supported.

Examples

Basic usage (valid source document)

Assume we have a JSON input document, called input-valid.json, that looks like this:

"first_name": "Jane",
"last_name": "Doe"

3
A JSON schema to validate this is as follows:
{

"$id": "https://example.com/schemas/customer",

"type": "object",

"properties": {
"first_name": {"type": "string"},
"last_name": {"type": "string"},
"email": {"type": "string"}

})

"required": [
"first_name",
"last_name"

]

}

Performing this validation using the p:validate-with-json-schema step returns the following on the
report port:

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-json-schema name="validate">
<p:with-input port="schema" href="example-json-schema.json"/>
</p:validate-with-json-schema>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.83+02:00</timestamp>
<document href="file:/../../input-valid.json"/>
<schema href="file:/../../example-json-schema.json" schematypens="JsonSchema"/>
<validator name="networknt/json-schema-validator"/>
</metadata>
<digest fatal-error-count="0"
error-count="0"
warning-count="0"
info-count="0"
valid="true"/>
</report>

https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/#xvrl-generation
https://spec.xproc.org/master/head/xvrl/#xvrl-generation

XProc 3.1 Step Reference

163

Basic usage (invalid source document)

Using the same JSON schema as in Basic usage (valid source document) (pg. 162), we’re now going to
validate an zzvalid document (called input-invalid. json). Since we want to have a look at what comes out
of the report port, we have to set the assert-valid option to false.

{"last_name": "Doe"}

Performing this validation using the p:validate-with-json-schema step returns the following on the

report port:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-json-schema assert-valid="false" name="validate">
<p:with-input port="schema" href="example-json-schema.json"/>
</p:validate-with-json-schema>

</p:declare-step>

Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">

<metadata>

<timestamp>2025-04-15T11:33:19.05+02:00</timestamp>

<document href="file:/../../input-invalid.json"/>

<schema href="file:/../../example-json-schema.json" schematypens="JsonSchema"/>
<validator name="networknt/json-schema-validator"/>

</metadata>

<detection severity="error" code="1028">
<location jsonpath="$"/>
<message>$.first_name: is missing but it is required</message>

</detection>

<digest fatal-error-count="0"
error-count="1"
warning-count="0"
info-count="0"
valid="false"/>

</report>

Additional details

* p:validate-with-json-schema preserves all document-properties of the document appearing on its
source port for the document on its result port.

* The document appearing on the report port only has a content-type property. It has no other
document-properties (also no base-uri).

Errors raised

Error code Description

XC0117 (pg. 219)

XC0163 (pg 220)

It is a dynamic error if a report-format option was specified that the processor does not
support.

It is a dynamic error if the selected version is not supported.

XC0164 (pg. 220)

It is a dynamic error if the document supplied on schema port is not a valid JSON schema
document in the selected version.

XC®165 (pg, 220)

It is a dynamic error if the assert-valid option on <p:validate-with-json-schema> is
true and the input document is not valid

XProc 3.1 Step Reference 164

2.63 p:validate-with-nvdl

Validate a document using NVDL.

Summary

<p:declare-step type="p:validate-with-nvdl">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<input port="nvdl" primary="false" content-types="xml" sequence="false"/>
<input port="schemas" primary="false" content-types="text xml" sequence="true">
<p:empty/>
<input/>
<output port="report" primary="false" content-types="xml json" sequence="true"/>
<option name="assert-valid" as="xs:boolean" required="false" select="true()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="report-format" as="xs:string" required="false" select="'xvrl'"/>
</p:declare-step>

The p:validate-with-nvdl step validates the document appearing on the source port using NVDL
(https://en.wikipedia.org/wiki/Namespace-based_Validation_Dispatching Language) (Namespace-based
Validation Dispatching Language) validation. The NVDL schema is supplied through the nvdl port. The
result port emits a copy of the source document.

Ports:

Type Primary? |Content |Seq? Descriptic
iEypIEs

source input true xml false The document to validate.
html
result output true xml false |A verbatim copy of the document that appeared on the
html source port.
nvdl input false xml false |The NVDL schema to validate against.
schemas |input false text true Optional schemas, referenced from the NVDL schema by
xml URL. See the description below for more information.
report output false xml true A report that describes the validation results, both for valid
json and invalid source documents. The format for this report is
determined by the report-format option.
When the assert-valid option is true and the document
is invalid, nothing will appear on this port because error
XC0053 (pg. 167) is raised.

Options:

Default Description

assert-valid xs:boolean false true Determines what happens if the document is invalid:
* Iftrue, error XCOO53 (pg. 167) is raised.
e If false, the step always succeeds. The validity of

the document must be determined by inspecting
the document that appears on the report port.

parameters map (xs:QName, false O Parameters controlling the validation. See “Validation
item()*)? parameters” on page 165 for more information.
report-format xs:string false xvrl The format for the document on the report port. The

value xvrl (default) will always work: the report will be
in XVRL (https://spec.xproc.org/master/head/xvtl/)
(Extensible Validation Report Language).

Whether any other formats are supported is
implementation-defined and therefore dependent on

the XProc processor used.

Description

The p:validate-with-nvdl step applies NVDL (https://en.wikipedia.org/wiki/Namespace-
based_Validation_Dispatching Ianguage) (Namespace-based Validation Dispatching Language) validation
to the document appearing on the source port. The NVDL schema is supplied using the nvdl port. The
outcome of the step, what appears on the result port, is a verbatim copy of the source document.

https://en.wikipedia.org/wiki/Namespace-based_Validation_Dispatching_Language
https://en.wikipedia.org/wiki/Namespace-based_Validation_Dispatching_Language
https://spec.xproc.org/master/head/xvrl/
https://en.wikipedia.org/wiki/Namespace-based_Validation_Dispatching_Language
https://en.wikipedia.org/wiki/Namespace-based_Validation_Dispatching_Language

XProc 3.1 Step Reference 165

An NVDL schema usually refers to other schemas by URIL. To find such a schema, the step first looks at

the schemas provided on the schema port (if any). If a schema with the same base URI as mentioned in the
NVDL schema is present on the schemas port, this is used. If not, the XProc processor will attempt to load
it by its URI, usually from disk.

Validation parameters

The p:validate-with-nvdl step has a parameters port of datatype map(xs:QName, item()*)?. This
(optional) map passes additional parameters for the validation process to the step:

* The parameters in this map, their values and semantics are implementation-defined and therefore
dependent on the XProc processor used.

* A special entry with key c:compile (the ¢ namespace prefix is bound to the standard XProc namespace
http://www.w3.org/ns/xproc-step) is reserved for parameters for the schema compilation (if
applicable). The value of this key must be a map itself.

* If the report-format option is set to xvrl (default): Any entries with keys in the xvrl namespace
(http://www.xproc.org/ns/xvrl) are passed as parameters to the process that generates the XVRL
(https:/ /spec.xproc.org/master/head/xvtl/) report appearing on the report port. All standard XVRL
generation parameters (https://spec.xproc.otg/master/head/xvtl/#xvtl-generation) are supported.

Examples

Basic usage (valid source document)

Assume we have an input document, called input-valid.xml, that looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<things xmlns:thingies="https://www.xprocref.org/ns/thingies">
<thingies:thing id="A">A thing...</thingies:thing>
<thingies:thing id="B">Another thing...</thingies:thing>

</things>

Since this document mixes namespaces, we want to validate it using NVDL. An NVDL schema for this,
called example.nvdl, is as follows:

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="https://www.xprocref.org/ns/thingies">
<validate schema="thingies.xsd"/>
</namespace>
<anyNamespace>
<allow/>
</anyNamespace>
</rules>

The <thing> elements in the https://www.xprocref.org/ns/thingies namespace are validated using
the following simple XML schema called thingies.xsd. It says that the only thing allowed is a <thing>
element with a required id attribute:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/
XMLSchema" elementFormDefault="qualified" targetNamespace="https://www.xprocref.org/ns/thingies"
xmlns="https://www.xprocref.org/ns/thingies">
<xs:element name="thing">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="id" type="xs:NCName" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:schema>

https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/#xvrl-generation
https://spec.xproc.org/master/head/xvrl/#xvrl-generation

XProc 3.1 Step Reference 166

Performing this validation using the p:validate-with-nvdl step returns the following on the report port:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-nvdl name="validate">
<p:with-input port="nvdl" href="example.nvdl"/>
</p:validate-with-nvdl>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.32+02:00</timestamp>
<document href="file:/../../input-valid.xml"/>
<schema href="file:/../../example.nvdl"
schematypens="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"/>
<validator name="jing"/>
</metadata>
<digest fatal-error-count="0"
error-count="0"
warning-count="0"
info-count="0"
valid="true"/>
</report>

Basic usage (invalid source document)

Using the same NVDL schema as in Basic usage (valid source document) (pg. 165), we’re now going to
validate an /zvalid document (called input-invalid.xml). Since we want to have a look at what comes out
of the report port, we have to set the assert-valid option to false.

<?xml version="1.0" encoding="UTF-8"?>

<things xmlns:thingies="https://www.xprocref.org/ns/thingies">
<thingies:thing id="A" invalid-attribute="true">A thing...</thingies:thing>
<thingies:thing id="B">Another thing...</thingies:thing>

</things>

Performing this validation using the p:validate-with-nvdl step returns the following on the report port:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-nvdl name="validate" assert-valid="false">
<p:with-input port="nvdl" href="example.nvdl"/>
</p:validate-with-nvdl>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.62+02:00</timestamp>
<document href="file:/../../input-invalid.xml"/>
<schema href="file:/../../example.nvdl"
schematypens="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"/>
<validator name="jing"/>
</metadata>
<detection severity="error">
<location line="2" column="51"/>
<message>cvc-complex-type.3.2.2: Attribute 'invalid-
attribute' is not allowed to appear in element 'thingies:thing'.</message>
</detection>
<digest fatal-error-count="0"
error-count="1"
warning-count="0"
info-count="0"
valid="false"/>
</report>

XProc 3.1 Step Reference 167

Additional details

* p:validate-with-nvdl preserves all document-properties of the document appearing on its source
port for the document on its result port.

* The document appearing on the report port only has a content-type property. It has no other
document-properties (also no base-uri).

* The document appearing on the result port may have been enriched with PSVI (Post-Schema-

Validation-Infoset) annotations (see the XML Schema recommendation (https://www.w3.org/ TR/
xmlschema-1/)).

Errors raised

Error code Dowipton]

XCe053 (pg. 217) It is a dynamic error if the assert-valid option on <p:validate-with-nvdl> is true and
the input document is not valid

XC0117 (pg. 219) It is a dynamic error if a report-format option was specified that the processor does not
support.
XC0154 (pg. 220) It is a dynamic error if the document supplied on nvdl port is not a valid NVDL document.

2.64 p:validate-with-relax-ng

Validate a document using RELAX NG.

Summary

<p:declare-step type="p:validate-with-relax-ng">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<input port="schema" primary="false" content-types="text xml" sequence="false"/>
<output port="report" primary="false" content-types="xml json" sequence="true"/>
<option name="assert-valid" as="xs:boolean" required="false" select="true()"/>
<option name="dtd-attribute-values" as="xs:boolean" required="false" select="false()"/>
<option name="dtd-id-idref-warnings" as="xs:boolean" required="false" select="false()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="report-format" as="xs:string" required="false" select="'xvrl'"/>
</p:declare-step>

The p:validate-with-relax-ng step validates the document appearing on the source port using
RELAX NG (https://en.wikipedia.org/wiki/RELAX_NG) (REgular LAnguage for XML Next Generation)
validation. The RELAX NG schema is supplied through the schema port. The result port emits a copy of
the source document.

https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://en.wikipedia.org/wiki/RELAX_NG

XProc 3.1 Step Reference 168

Ports:
Primary? |Content |Seq? Description
iTPES
source input true xml false The document to validate.
html
result |output true xml false |A verbatim copy of the document that appeared on the
html source port.
schema input false text false |The RELAX NG schema to validate against:
xml e If the document appearing on this port is XML (has

an XML media type), it must be a valid RELAX NG
XML Syntax (https://en.wikipedia.org/wiki/
RELAX_NG#XMI__syntax) schema.
e If the document appearing on this port is text (has
a text media type), it must be a valid RELAX NG
Compact Syntax (https://en.wikipedia.org/wiki/
RELAX_NG#Compact_syntax) schema.
report output false xml true A report that describes the validation results, both for valid
json and invalid source documents. The format for this report is
determined by the report-format option.

When the assert-valid option is true and the document
is invalid, nothing will appear on this port because error
XCO155 (pg. 171) is raised.

Options:

Name Default Description

assert-valid xs:boolean false |true Determines what happens if the document is znvalid:

e If true, error XCO155 (pg. 171) is raised.

e If false, the step always succeeds. The validity
of the document must be determined by
inspecting the document that appears on the
report port.

dtd-attribute- xs:boolean false |false |If true, the attribute value defaulting conventions
values of RELAX NG are applied. See the RELAX NG
DTD Compatibility specification (https://
www.oasis-open.org/committees/relax-
ng/compatibility-20011203.html) for more

information.
dtd-id-idref- xs:boolean false |false |If true, a schema thatis incompatible with the
warnings ID/IDREF/IDREFs feature of RELAX’NG

DTD Compatibility as invalid. See the RELAX NG
DTD Compatibility specification (https://
www.oasis-open.org/committees/relax-

ng/compatibility-20011203.html) for more

information.
parameters map (xs :QName, false @) Parameters controlling the validation. See
item()*)? “Validation parameters” on page 169 for more
information.
report-format xs:string false xvrl The format for the document on the report port.

The value xvrl (default) will always work: the
report will be in XVRL (https://spec.xproc.otg/
master/head/xvtl/) (Extensible Validation Report
Language).

Whether any other formats are supported is
implementation-defined and therefore dependent
on the XProc processor used.

https://en.wikipedia.org/wiki/RELAX_NG#XML_syntax
https://en.wikipedia.org/wiki/RELAX_NG#XML_syntax
https://en.wikipedia.org/wiki/RELAX_NG#XML_syntax
https://en.wikipedia.org/wiki/RELAX_NG#Compact_syntax
https://en.wikipedia.org/wiki/RELAX_NG#Compact_syntax
https://en.wikipedia.org/wiki/RELAX_NG#Compact_syntax
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/

XProc 3.1 Step Reference 169

Description

The p:validate-with-relax-ng step applies RELAX NG (https://en.wikipedia.org/wiki/RELAX_NG)
(REgular LAnguage for XML Next Generation) validation to the document appearing on the source port.
The RELAX NG schema is supplied using the schema port. The outcome of the step, what appears on the
result port, is a verbatim copy of the source document.

RELAX NG has two syntaxes: An XML based syntax (https://en.wikipedia.org/wiki/
RELAX NG#XML_syntax) and a text based syntax (https://en.wikipedia.org/wiki/
RELAX_NG#Compact_syntax). Both can be used.

Validation parameters

The p:validate-with-relax-ng step has a parameters port of datatype map(xs:QName, item()*)?.
This (optional) map passes additional parameters for the validation process to the step:

* The parameters in this map, their values and semantics are implementation-defined and therefore
dependent on the XProc processor used.

* A special entry with key c:compile (the ¢ namespace prefix is bound to the standard XProc namespace
http://www.w3.org/ns/xproc-step) is reserved for parameters for the schema compilation (if
applicable). The value of this key must be a map itself.

* If the report-format option is set to xvrl (default): Any entries with keys in the xvrl namespace
(http://www.xproc.org/ns/xvrl) are passed as parameters to the process that generates the XVRL
(https:/ /spec.xproc.org/master/head/xvtl/) report appearing on the report port. All standard XVRL
generation parameters (https://spec.xproc.org/master/head/xvtl/#xvtl-generation) are supported.

Examples

Basic usage (valid source document)

Assume we have an input document, called input-valid.xml, that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<things>
<thing>A thing...</thing>
<thing>Another thing...</thing>
</things>

A RELAX NG schema to validate this is as follows:

<grammar ns="" xmlns="http://relaxng.org/ns/structure/1.0">
<start>
<element name="things">
<oneOrMore>
<element name="thing">
<text/>
</element>
</oneOrMore>
</element>
</start>
</grammar>

Performing this validation using the p:validate-with-relax-ng step returns the following on the report
port:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-relax-ng name="validate">
<p:with-input port="schema" href="example.rng"/>

</p:validate-with-relax-ng>

</p:declare-step>

https://en.wikipedia.org/wiki/RELAX_NG
https://en.wikipedia.org/wiki/RELAX_NG#XML_syntax
https://en.wikipedia.org/wiki/RELAX_NG#XML_syntax
https://en.wikipedia.org/wiki/RELAX_NG#Compact_syntax
https://en.wikipedia.org/wiki/RELAX_NG#Compact_syntax
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/#xvrl-generation
https://spec.xproc.org/master/head/xvrl/#xvrl-generation

XProc 3.1 Step Reference 170

Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.87+02:00</timestamp>
<document href="file:/../../input-valid.xml"/>
<schema href="file:/../../example.rng"
schematypens="http://relaxng.org/ns/structure/1.0"/>
<validator name="jing"/>
</metadata>
<digest fatal-error-count="0"
error-count="0"
warning-count="0"
info-count="0"
valid="true"/>
</report>

Basic usage (invalid source document)

Using the same RELAX NG schema as in Basic usage (valid source document) (pg. 169), we’re now going
to validate an zzvalid document (called input-invalid.xml). Since we want to have a look at what comes
out of the report port, we have to set the assert-valid option to false.

<?xml version="1.0" encoding="UTF-8"?>

<things xmlns:thingies="https://www.xprocref.org/ns/thingies">
<thingies:thing id="A" invalid-attribute="true">A thing...</thingies:thing>
<thingies:thing id="B">Another thing...</thingies:thing>

</things>

Performing this validation using the p:validate-with-relax-ng step returns the following on the report
port:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-relax-ng assert-valid="false" name="validate">
<p:with-input port="schema" href="example.rng"/>
</p:validate-with-relax-ng>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.11+02:00</timestamp>
<document href="file:/../../input-invalid.xml"/>
<schema href="file:/../../example.rng"
schematypens="http://relaxng.org/ns/structure/1.0"/>
<validator name="jing"/>
</metadata>
<detection severity="error">
<location line="3" column="16"/>
<message>element "thing-error" not allowed anywhere; expected the element end-tag or element "thing"</
message>
</detection>
<digest fatal-error-count="0"
error-count="1"
warning-count="0"
info-count="0"
valid="false"/>

</report>

Additional details

* p:validate-with-relax-ng preserves all document-properties of the document appearing on its
source port for the document on its result port.

* The document appearing on the report port only has a content-type property. It has no other
document-properties (also no base-uri).

* The document appearing on the result port may have been enriched with PSVI (Post-Schema-
Validation-Infoset) annotations (see the XML Schema recommendation (https://www.w3.0tg/ TR/
xmlschema-1/)).

https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/

XProc 3.1 Step Reference 171

Errors raised

Error code Description

XCe117 (pg. 219) It is a dynamic error if a report-format option was specified that the processor does not
support.

XCo153 (pg. 220) It is a dynamic error if the document supplied on schema port cannot be interpreted as an
RELAX NG Grammar.

XCe155 (pg. 220) It is a dynamic error if the assert-valid option on <p:validate-with-relax-ng> is true
and the input document is not valid.

2.65 p:validate-with-schematron

Validates a document using Schematron.

Summary

<p:declare-step type="p:validate-with-schematron">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<input port="schema" primary="false" content-types="xml" sequence="false"/>
<output port="report" primary="false" content-types="xml json" sequence="true"/>
<option name="assert-valid" as="xs:boolean" required="false" select="true()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="phase" as="xs:string" required="false" select="'#DEFAULT'"/>
<option name="report-format" as="xs:string" required="false" select="'svrl'"/>
</p:declare-step>

The p:validate-with-schematron step validates the document appearing on the source port using
Schematron validation. The Schematron schema is supplied through the schema port. The result port emits
a copy of the source document.

Ports:
Primary? |Content |Seq? Description
TS
source input true xml false The document to validate.
html
result |output true xml false |A verbatim copy of the document that appeared on the
html source port.
schema input false xml false The Schematron schema to validate against.
report output false xml true A report that desctibes the validation results, both for valid
json and invalid source documents. The format for this report is
determined by the report-format option.
When the assert-valid option is true and the document
is imvalid, nothing will appear on this port because error
XC0054 (pg. 177) is raised.

XProc 3.1 Step Reference 172

Options:

Description

assert-valid xs :boolean false |true Determines what happens if the document is invalid:

e If true, error XCOO54 (pg. 177) is raised.

* If false, the step always succeeds. The validity
of the document must be determined by
inspecting the document that appears on the
report port.

parameters map (xs :QName, false O Parameters controlling the validation. See “Validation
item()*)? parameters” on page 172 for more information.

phase xs:string false #DEFAULT |The Schematron schema phase to select.

report-format xs:string false svrl The format for the document on the report port:

* The value svrl (default) produces a report
in SVRL (https://schematron.com/
document/3427.html) (Schematron Validation
Report Language).

* The value xvrl (default) produces a report in
XVRL (https://spec.xproc.org/master/head/
xvtl/) (Extensible Validation Report Language).

* Whether any other formats are supported
is implementation-defined and therefore
dependent on the XProc processor used.

Description

The p:validate-with-schematron step applies Schematron (https://schematron.com/) validation to the
document appearing on the source port. The Schematron schema must be supplied using the schema port.
The outcome of the step, what appears on the result port, is a verbatim copy of the source document.

Validation parameters

The p:validate-with-schematron step has a parameters port of datatype map(xs:QName, item()*)?.

This (optional) map passes additional parameters for the validation process to the step, which correspond to

Schematron external variables, to parameters that influence code generation, or to parameters that influence

SVRL to XVRL conversion.

* The parameters in this map, their values and semantics are implementation-defined and therefore
dependent on the XProc processor used.

* A special entry with key c:implementation (the ¢ namespace prefix is bound to the standard XProc
namespace http://www.w3.org/ns/xproc-step) is reserved to select a Schematron implementation
the XProc processor supports.The list of supported Schematron implementations and their associated
values is implementation-defined and therefore dependent on the XProc processor used.

* A special entry with key c:compile (the ¢ namespace prefix is bound to the standard XProc namespace
http://www.w3.0rg/ns/xproc-step) is reserved for parameters for the schema compilation (if
applicable). The value of this key must be a map itself.

For instance, if a code-generating implementation such as SchXslt (https://github.com/schxslt/schxslt)
is used, the entries of the c:compile map are passed to the code generator.

e If the report-format option is set to xvrl (default): Any entries with keys in the xvrl namespace
(http://www.xproc.org/ns/xvrl) are passed as parameters to the process that generates the XVRL
(https://spec.xproc.org/mastet/head/xvtl/) report appearing on the report port. All standard XVRL
generation patameters (https://spec.xproc.otg/master/head/xvtl/#xvtl-generation) are supported.

https://schematron.com/document/3427.html
https://schematron.com/document/3427.html
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://schematron.com/
https://github.com/schxslt/schxslt
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/#xvrl-generation
https://spec.xproc.org/master/head/xvrl/#xvrl-generation

XProc 3.1 Step Reference 173

Examples

Basic usage (valid source document)

Assume we have an input document, called input-valid.xml, that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<things>

<thing id="A">A thing...</thing>

<thing id="B">Another thing... referencing <thingref idref="A"/>!</thing>
</things>

Any <thingref> elements must reference existing <thing> elements by identifier. Here is a simple
Schematron schema that validates this:

<schema xmlns="http://purl.oclc.org/dsdl/schematron” queryBinding="xslt2">

<pattern>
<rule context="thingref/@idref">
<let name="id" value="string(.)"/>
<assert test="exists(//thing[@id eq $id])">Reference to non-existent id: "<value-of select="$id"/>"</
assert>
</rule>
</pattern>

</schema>

Performing this validation using the p:validate-with-schematron step (which, for this example, uses the
SchXslt (https://github.com/schxslt/schxslt) Schematron processor) returns the following on the report
port:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-schematron name="validate">
<p:with-input port="schema" href="example.sch"/>
</p:validate-with-schematron>

</p:declare-step>
Result document:

<svrl:schematron-output xmlns:svrl="http://purl.oclc.org/dsdl/svrl">
<svrl:metadata>
<dct:creator xmlns:dct="http://purl.org/dc/terms/">
<dct:Agent>
<skos:prefLabel xmlns:skos="http://www.w3.0rg/2004/02/skos/core#">SAXON/HE 12.4</skos:preflLabel>
</dct:Agent>
</dct:creator>
<dct:created xmlns:dct="http://purl.org/dc/terms/">2025-04-15T11:33:19.7377744+02:00</dct:created>
<dct:source xmlns:dct="http://purl.org/dc/terms/">
<rdf:Description xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<dct:creator>
<dct:Agent>
<skos:preflLabel xmlns:skos="http://www.w3.0rg/2004/02/skos/core#">SchXslt/1.10.1 SAXON/
HE 12.4</skos:preflLabel>
<schxslt.compile.typed-variables xmlns="https://doi.org/10.5281/zenodo.1495494#" >true</
schxslt.compile.typed-variables>
</dct:Agent>
</dct:creator>
<dct:created>2025-04-15T711:33:19.7337803+02:00</dct:created>
</rdf:Description>
</dct:source>
</svrl:metadata>
<svrl:active-pattern documents="file:/../../input-valid.xml"/>
<svrl:fired-rule context="thingref/@idref"/>
</svrl:schematron-output>

https://github.com/schxslt/schxslt

XProc 3.1 Step Reference 174

The same example, but now producing a XVRL (https://spec.xproc.otg/master/head/xvtl/) format report,
is as follows:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-schematron name="validate" report-format="xvrl">
<p:with-input port="schema" href="example.sch"/>
</p:validate-with-schematron>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.64+02:00</timestamp>
<document href="file:/../../input-valid.xml"/>
<schema href="file:/../../example.sch"
schematypens="http://purl.oclc.org/dsdl/schematron"/>
<validator name="SchXslt"/>
</metadata>
<digest fatal-error-count="0"
error-count="0"
warning-count="0"
info-count="0"
valid="true"/>
</report>

The exact format of the reports might differ across implementations. Please experiment before using it.

Basic usage (invalid source document)

Using the same Schematron schema as in Basic usage (valid source document) (pg. 173), we’re now going
to validate an zzvalid document (called input-invalid.xml). Since we want to have a look at what comes
out of the report port, we have to set the assert-valid option to false.
<?xml version="1.0" encoding="UTF-8"?>
<things>
<thing id="A">A thing...</thing>
<thing id="B">Another thing... referencing <thingref idref="C"/>!</thing>
</things>
Performing this validation using the p:validate-with-schematron step (which, for this example, uses the
SchXslt (https://github.com/schxslt/schxslt) Schematron processor) returns the following on the report
port:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-schematron assert-valid="false" name="validate">
<p:with-input port="schema" href="example.sch"/>
</p:validate-with-schematron>

</p:declare-step>

https://spec.xproc.org/master/head/xvrl/
https://github.com/schxslt/schxslt

XProc 3.1 Step Reference 175

Result document:

<svrl:schematron-output xmlns:svrl="http://purl.oclc.org/dsdl/svrl">
<svrl:metadata>
<dct:creator xmlns:dct="http://purl.org/dc/terms/">
<dct:Agent>
<skos:preflLabel xmlns:skos="http://www.w3.0rg/2004/02/skos/core#">SAXON/HE 12.4</skos:preflLabel>
</dct:Agent>
</dct:creator>
<dct:created xmlns:dct="http://purl.org/dc/terms/">2025-04-15T11:33:19.7918518+02:00</dct:created>
<dct:source xmlns:dct="http://purl.org/dc/terms/">
<rdf:Description xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<dct:creator>
<dct:Agent>
<skos:preflLabel xmlns:skos="http://www.w3.0rg/2004/02/skos/core#">SchXslt/1.10.1 SAXON/
HE 12.4</skos:preflLabel>
<schxslt.compile.typed-variables xmlns="https://doi.org/10.5281/zenodo.1495494#" >true</
schxslt.compile.typed-variables>
</dct:Agent>
</dct:creator>
<dct:created>2025-04-15T11:33:19.7893464+02:00</dct:created>
</rdf:Description>
</dct:source>
</svrl:metadata>
<svrl:active-pattern documents="file:/../../input-invalid.xml"/>
<svrl:fired-rule context="thingref/@idref"/>
<svrl:failed-assert location="/Q{}things[1]/Q{}thing[2]/Q{}thingref[1]/@Q{}idref"
test="exists(//thing[@id eq $id])">
<svrl:text>Reference to non-existent id: "C"</svrl:text>
</svrl:failed-assert>
</svrl:schematron-output>

The same example, but now producing a XVRL (https://spec.xproc.otg/master/head/xvtl/) format repott,
is as follows:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-schematron name="validate" assert-valid="false" report-format="xvrl">
<p:with-input port="schema" href="example.sch"/>
</p:validate-with-schematron>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.19+02:00</timestamp>
<document href="file:/../../input-invalid.xml"/>
<schema href="file:/../../example.sch"
schematypens="http://purl.oclc.org/dsdl/schematron"/>
<validator name="SchXslt"/>
</metadata>
<detection severity="error">
<location xpath="/Q{}things[1]/Q{}thing[2]/Q{}thingref[1]/@Q{}idref"/>
<message>Reference to non-existent id: "C"</message>
</detection>
<digest fatal-error-count="0"
error-count="1"
warning-count="0"
info-count="0"
valid="false"/>
</report>

https://spec.xproc.org/master/head/xvrl/

XProc 3.1 Step Reference 176

Again, the exact format of the reports might differ across implementations. Please experiment before using it.

Another way of handling validation errors is to have p:validate-with-schematron raise its error XC0054
(pg. 177) (by setting the assert-valid option to true) and catch this in a <p:try>/<p:catch>
construction. The following pipeline shows you the <c:errors> result, that is available inside the
<p:catch>:

<p:declare-step xmlns:err="http://www.w3.org/ns/xproc-error" xmlns:p="http://www.w3.org/ns/
xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:try>
<p:validate-with-schematron assert-valid="true">
<p:with-input port="schema" href="example.sch"/>
</p:validate-with-schematron>
<p:catch code="err:XCeo54">
<p:identity/>
</p:catch>
</p:try>

</p:declare-step>
Result document:

<c:errors xmlns:c="http://www.w3.org/ns/xproc-step">
<c:error xmlns:err="http://www.w3.org/ns/xproc-error"
code="err:Xco054"

type="p:validate-with-schematron"
href="file:/../../."
line="7"
column="53">
<svrl:schematron-output xmlns:svrl="http://purl.oclc.org/dsdl/svrl">
<svrl:metadata>
<dct:creator xmlns:dct="http://purl.org/dc/terms/">
<dct:Agent>
<skos:preflLabel xmlns:skos="http://www.w3.0rg/2004/02/skos/core#">SAXON/HE 12.4</
skos:prefLabel>
</dct:Agent>
</dct:creator>
<dct:created xmlns:dct="http://purl.org/dc/terms/">2025-04-15T11:33:19.8484251+02:00</
dct:created>
<dct:source xmlns:dct="http://purl.org/dc/terms/">
<rdf:Description xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<dct:creator>
<dct:Agent>
<skos:preflLabel xmlns:skos="http://www.w3.0rg/2004/02/skos/
core#">SchXs1lt/1.10.1 SAXON/HE 12.4</skos:preflLabel>
<schxslt.compile.typed-variables xmlns="https://doi.org/10.5281/
zenodo.14954944#" >true</schxslt.compile.typed-variables>
</dct:Agent>
</dct:creator>
<dct:created>2025-04-15T11:33:19.8444254+02:00</dct:created>
</rdf:Description>
</dct:source>
</svrl:metadata>
<svrl:active-pattern documents="file:/../../input-invalid.xml"/>
<svrl:fired-rule context="thingref/@idref"/>
<svrl:failed-assert location="/Q{}things[1]/Q{}thing[2]/Q{}thingref[1]/@Q{}idref"
test="exists(//thing[@id eq $id])">
<svrl:text>Reference to non-existent id: "C"</svrl:text>
</svrl:failed-assert>
</svrl:schematron-output>
</c:error>
</c:errors>

The exact contents of the <c:errors> element might differ across implementations. Please experiment
before using it.

XProc 3.1 Step Reference 177

Additional details

* p:validate-with-schematron preserves all document-properties of the document appearing on its
source port for the document on its result port.

* The document appearing on the report port only has a content-type property. It has no other
document-properties (also no base-uri).

* The document appearing on the result port may have been enriched with PSVI (Post-Schema-
Validation-Infoset) annotations (see the XML Schema recommendation (https://www.w3.org/ TR/
xmlschema-1/)).

Errors raised

XCe054 (pg. 217) It is a dynamic error if the assert-valid option is true and any Schematron assertions fail.

XC0117 (pg. 219) It is a dynamic error if a report-format option was specified that the processor does not
support.

XCo151 (pg. 220) It is a dynamic error if the document supplied on schema port is not a valid Schematron
document.

2.66 p:validate-with-xml-schema

Validates a document using XML Schema.

Summary

<p:declare-step type="p:validate-with-xml-schema">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="xml html" sequence="false"/>
<input port="schema" primary="false" content-types="xml" sequence="true"/>
<output port="report" primary="false" content-types="xml json" sequence="true"/>
<option name="assert-valid" as="xs:boolean" required="false" select="true()"/>
<option name="mode" as="item()*" required="false" select="'strict'" values="('strict','lax')"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="report-format" as="xs:string" required="false" select="'xvrl'"/>
<option name="try-namespaces" as="xs:boolean" required="false" select="false()"/>
<option name="use-location-hints" as="xs:boolean" required="false" select="false()"/>
<option name="version" as="xs:string?" required="false" select="()"/>

</p:declare-step>

The p:validate-with-xml-schema step validates the document appearing on the source port using XML
Schema validation. The most common way to provide a schema is through its schema port. The result

pott emits a copy of the soutce document with default attributes/elements filled in and (optional) PSVI
annotations.

https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/

XProc 3.1 Step Reference

178

Ports:

Content
types

Description

source

input

true

xml
html

false

The document to validate.

result

schema

output

input

true

false

xml
html

xml

false

true

The document that appeared on the source port

with the following alterations (see also the XML

Schema recommendation (https://www.w3.otg/ TR/
xmlschema-1/)):

e If the XProc processor supports PSVI (Post-Schema-

Validation-Infoset) annotations:

* The document is salid: the source document with
PSVI annotations and any defaulting of attributes
and elements filled in.

* The document is znvalid and the assert-valid
option is false: the source document with maybe
some PSVI annotations (at least for the sub-trees
that are valid).

e If PSVI annotations are not supported by the XProc
processor used:

* The document is zalid: the source document with
any defaulting of attributes and elements filled in.

* The document is /nvalid and the assert-valid

option is false: the source document, unchanged.

When the assert-valid option is true and the document
is invalid, nothing will appear on this port because error
XCO156 (pg. 184) is raised.

Schema(s) to validate against. Providing a schema (or
more than one) on this port is the most common way of
supplying schemas to the step. There are other ways to
provide schemas, see “Locating schemas” on page 180
for more information.

report

output

false

xml
json

true

A report that describes the validation results, both for valid
and invalid source documents. The format for this report is
determined by the report-format option.

When the assert-valid option is true and the document

is invalid, nothing will appear on this port because error
XCO156 (pg. 184) is raised.

https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/

XProc 3.1 Step Reference 179

Options:
Default Description
assert-valid xs:boolean false true Determines what happens if the document is
invalid:

e If true, error XCO156 (pg. 184) is raised.

* If false, the step always succeeds.
The validity of the document must be
determined by inspecting the document
that appears on the report port.

mode item()* false strict |This option controls how the schema validation
starts:

* Setting this to strict means that the
document element must be declared and
schema-valid, otherwise it will be treated as
invalid.

* Setting this to 1lax means that the absence
of a declaration for the document element
does not itself count as an unsuccessful
outcome of validation. See Validating in lax
mode (pg. 184) for an example.

parameters map(xs:QName, item(¥a)l2e O Parameters controlling the validation. See

“Validation parameters” on page 180 for

more information.

report-format xs:string false xvrl The format for the document on the report
port. The value xvrl (default) will always

work: the report will be in XVRL (https://
spec.xproc.org/master/head/xvtl/) (Extensible
Validation Report Language).

Whether any other formats are supported

is implementation-defined and therefore
dependent on the XProc processor used.

try-namespaces xs:boolean false false |Whether to try to dereference any namespace
URIs in the source document for locating
schemas. See “Locating schemas” on

page 180 for more information.

use-location- xs:boolean false false Determines what to do with schema location
hints hints in the source document. See “Locating
schemas” on page 180 for more information.

version xs:string? false O If this option is set, the specified version of
XML Schema must be used for validation.
Likely values are 1.0 or 1.1. Which

XML Schema versions are supported is
implementation-defined and therefore
dependent on the XProc processor used. In all
likelihood, version 1.0 will always be supported.

If this option is #ot set, the XML schema version
use and therefore dependent on the XProc
processor used. For instance, it might be simply
1.0, or the XProc processor might take a look
at the XML schema itself to determine the
version.

Description

The p:validate-with-xml-schema step validates the document appearing on the source against one or
more W3C XML Schema(s) (https://www.w3.org/TR/xmlschema-1/).

The schema(s) used for validation can be provided in several ways. Probably the most common way is to
provide them on the schema port. Another likely way to provide schemas is using schema references in the
source document. If you want the p:validate-with-xml-schema step to do this, you must set the use-
location-hint option to true. For more information about providing schemas see the “Locating schemas”
on page 180 section below.

https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://www.w3.org/TR/xmlschema-1/

XProc 3.1 Step Reference 180

The outcome of the step, what appears on the result port, is a copy of the source document with a few
alterations. If the document is valid all default attributes and elements will be filled in. If the processor
supports PSVI annotations (as desctibed in the XML Schema recommendation (https://www.w3.0tg/ TR/
xmlschema-1/)) these will be present to. For details see the description of the result pot.

Locating schemas

One or more schemas can be provided on the schema port. But it is also possible the document on the
source port contains schema references on its own, for instance an xsi:schemalocation attribute. So
which schema(s) should the step use for validation? The rules are as follows:

* If documents are provided on the schema port, these will be used. For most use-cases, this is the
preferred way of providing the schema(s).

e If there are no schemas supplied on the schema port:

e Ifthe use-location-hint option is true, the XProc processor will have a look at schema
references in the source document. Which location hints it will recognize as such is implementation-
defined and therefore dependent on the XProc processor used. However, most probably, the
xsi:noNamespaceSchemalLocation and xsi:schemalLocation attributes should do the trick (the
xsi namespace prefix here is bound to the http://www.w3.0rg/2001/XMLSchema-instance
namespace). See Using location hints (pg. 183) for an example.

If the use-location-hint option is false (default), schema references in the source document are
ignored.

* Ifthe try-namespaces option is true, the XProc processor will try to retrieve the schema
for a namespace using the namespace URIL So if we have a document in the http://
www . something.org/ns/documents namespace, the XProc processor will perform an HTTP GET
request on this URL If this returns a valid XML schema, the show is on. Some implementations
might also be able to handle RDDL (https://tddl.org/) documents that refer to schemas.

If the try-namespaces option is false (default) no attempt like this will be made.

Validation parameters

The p:validate-with-xml-schema step has a parameters port of datatype map(xs:QName, item()*)?.
This (optional) map passes additional parameters for the validation process to the step:

* The parameters in this map, their values and semantics are implementation-defined and therefore
dependent on the XProc processor used.

* A special entry with key c:compile (the ¢ namespace prefix is bound to the standard XProc namespace
http://www.w3.0rg/ns/xproc-step) is reserved for parameters for the schema compilation (if
applicable). The value of this key must be a map itself.

* If the report-format option is set to xvrl (default): Any entries with keys in the xvrl namespace
(http://www.xproc.org/ns/xvrl) are passed as parameters to the process that generates the XVRL
(https://spec.xproc.org/mastet/head/xvtl/) report appearing on the report port. All standard XVRL
generation parameters (https://spec.xproc.otg/master/head/xvtl/#xvtl-generation) are supported.

Examples

Basic usage (valid source document)

We’re going to use a schema, that validates simple XML documents, consisting of a <things> root element
and zero or more <thing> children. The root element has an optional attribute called status with default
value normal.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="things">
<Xs:complexType>
<Xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="thing" type="xs:string"/>
</Xs:sequence>
<xs:attribute default="normal" name="status" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>

https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://rddl.org/
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/
https://spec.xproc.org/master/head/xvrl/#xvrl-generation
https://spec.xproc.org/master/head/xvrl/#xvrl-generation

XProc 3.1 Step Reference 181

Let’s use this schema to validate a valid document (called input-valid.xml) and see what comes out of the
result port:

<things>
<thing>A thing...</thing>
<thing>Another thing...</thing>
</things>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:validate-with-xml-schema>
<p:with-input port="schema" href="example.xsd"/>
</p:validate-with-xml-schema>

</p:declare-step>
Result document:

<things status="normal">
<thing>A thing...</thing>
<thing>Another thing...</thing>
</things>

Notice that the missing optional attribute status, as defined in the schema, has been added to the <things>
root element, with its default value normal. This will happen to every optional atttibute and/or element that
is not present in the source.

Now let’s have a look at the XVRL (https://spec.xproc.org/master/head/xvtl/) report appearing on the
report port (for the same, valid, source document):

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-xml-schema name="validate">
<p:with-input port="schema" href="example.xsd"/>
</p:validate-with-xml-schema>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.96+02:00</timestamp>
<document href="file:/../../input-valid.xml"/>
<schema href="file:/../../example.xsd"
schematypens="http://www.w3.0rg/2001/XMLSchema"/>
<validator name="org.apache.xerces.jaxp.validation.XMLSchemaFactory"/>
</metadata>
<digest fatal-error-count="0"
error-count="0"
warning-count="0"
info-count="0"
valid="true"/>
</report>

The exact format of the report might differ across implementations. Please experiment before using it.

Basic usage (invalid source document)

We’re going to use the same schema as in Basic usage (valid source document) (pg. 180), but now provide
an znvalid source document (called input-invalid.xml):

<things>
<thing>A thing...</thing>
<thing-error>Another thing...</thing-error>
</things>

https://spec.xproc.org/master/head/xvrl/

XProc 3.1 Step Reference 182

The pipeline will catch the resulting XVRL (https://spec.xproc.org/master/head/xvtl/) report. Please notice
that we need to set the assert-valid option to false. If we had left it to its default value true, error
XC0156 (pg. 184) would have been raised.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="report@validate"/>

<p:validate-with-xml-schema assert-valid="false" name="validate">
<p:with-input port="schema" href="example.xsd"/>
</p:validate-with-xml-schema>

</p:declare-step>
Result document:

<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.22+02:00</timestamp>
<document href="file:/../../input-invalid.xml"/>
<schema href="file:/../../example.xsd"
schematypens="http://www.w3.0rg/2001/XMLSchema"/>
<validator name="org.apache.xerces.jaxp.validation.XMLSchemaFactory"/>
</metadata>
<detection severity="error">
<location line="3" xpath="/Q{}things[1]/Q{}thing-error[1]"/>
<message>cvc-complex-type.2.4.a: Invalid content was found starting with element 'thing-
error'. One of '{thing}' is expected.</message>
</detection>
<digest fatal-error-count="0"
error-count="1"
warning-count="0"
info-count="0"
valid="false"/>
</report>

Again, the exact format of the report might differ across implementations. Please experiment before using it.

Another way of handling validation errors is to have p:validate-with-xml-schema raise its error XC@156
(pg- 184) and catch this in a <p:try>/<p:catch> construction. The following pipeline shows you the
<c:errors> result, that is available inside the <p:catch>:

<p:declare-step xmlns:err="http://www.w3.org/ns/xproc-error" xmlns:p="http://www.w3.org/ns/
xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:try>
<p:validate-with-xml-schema>
<p:with-input port="schema" href="example.xsd"/>
</p:validate-with-xml-schema>
<p:catch code="err:XC0156">
<p:identity/>
</p:catch>
</p:try>

</p:declare-step>

https://spec.xproc.org/master/head/xvrl/

XProc 3.1 Step Reference 183

Result document:

<c:errors xmlns:c="http://www.w3.org/ns/xproc-step">
<c:error xmlns:err="http://www.w3.org/ns/xproc-error"
code="err:Xco156"
name="1!1.1.1.1"
type="p:validate-with-xml-schema"
href="file:/../../."
line="7"
column="33">
<report xmlns="http://www.xproc.org/ns/xvrl">
<metadata>
<timestamp>2025-04-15T11:33:19.48+02:00</timestamp>
<document href="file:/../../input-invalid.xml"/>
<schema href="file:/../../example.xsd"
schematypens="http://www.w3.0rg/2001/XMLSchema" />
<validator name="org.apache.xerces.jaxp.validation.XMLSchemaFactory"/>
</metadata>
<detection severity="error">
<location line="3" xpath="/Q{}things[1]/Q{}thing-error[1]"/>
<message>cvc-complex-type.2.4.a: Invalid content was found starting with element 'thing-
error'. One of '{thing}' is expected.</message>
</detection>
<digest fatal-error-count="0"
error-count="1"
warning-count="0"
info-count="0"
valid="false"/>

</report>
</c:error>
</c:errors>
The exact contents of the <c:errors> element might differ across implementations. Please experiment
before using it.

Using location hints

Sometimes you have source documents that already contain schema references, for instance:

<things>
<thing>A thing...</thing>
<thing>Another thing...</thing>
</things>
If we want the p:validate-with-xml-schema step to use this reference, we have to set the try-
location-hints to true. We don’t need to validate against any other schemas, so we set the schema port to
empty.
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:validate-with-xml-schema>
<p:with-input port="schema" href="example.xsd"/>
</p:validate-with-xml-schema>

</p:declare-step>
Result document:
<things status="normal">
<thing>A thing...</thing>

<thing>Another thing...</thing>
</things>

XProc 3.1 Step Reference 184

Validating in lax mode

Usually you want a document to completely validate against a schema. However, there are use-cases where
the documents to validate are wrapped inside some root element. This happens, for instance, when in XProc
you have a sequence of documents and use p:wrap-sequence (pg. 188) to wrap these results into a single
XML document. The p:validate-with-xml-schema step allows you to disregard the root element and
validate its child elements only by setting the mode option to lax.

Source document:

<weird-root-element>
<things>
<thing>A thing...</thing>
<thing>Another thing...</thing>
</things>
<things/>
</weird-root-element>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.0org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:validate-with-xml-schema mode="1ax">
<p:with-input port="schema" href="example.xsd"/>
</p:validate-with-xml-schema>

</p:declare-step>
Result document:

<weird-root-element>
<things status="normal">
<thing>A thing...</thing>
<thing>Another thing...</thing>
</things>
<things status="normal"/>
</weird-root-element>

Additional details

* p:validate-with-xml-schema preserves all document-properties of the document appearing on its
source port for the document on its result port.

* The document appearing on the report port only has a content-type property. It has no other
document-properties (also no base-uri).

* A schema can contain <xs:include> or <xs:import> clements. It is implementation-defined, and
therefore dependent on the XProc processor used, if the documents supplied on the schema port are
considered when resolving these elements.

Errors raised

Error code Description

XCoo11 (pg. 217) It is a dynamic error if the specified schema version is not available.

XCe055 (pg. 217) It is a dynamic error if the implementation does not support the specified mode.

XC0117 (pg. 219) It is a dynamic error if a report-format option was specified that the processor does not
support.

XC0152 (pg. 220) It is a dynamic error if the document supplied on schema port is not a valid XML schema
document.

XCo156 (pg. 220) It is a dynamic error if the assert-valid option on <p:validate-with-xml-schema> is
true and the input document is not valid

XProc 3.1 Step Reference 185

2.67 p:wrap

Wraps nodes in a parent element.

Summary

<p:declare-step type="p:wrap">
<input port="source" primary="true" content-types="xml html" sequence="false"/>
<output port="result" primary="true" content-types="application/xml" sequence="false"/>
<option name="match" as="xs:string" required="true"/>
<option name="wrapper" as="xs:QName" required="true"/>
<option name="attributes" as="map(xs:QName, xs:anyAtomicType)?" required="false" select="()"/>
<option name="group-adjacent" as="xs:string?" required="false" select="()"/>

</p:declare-step>

The p:wrap step wraps matching nodes in the document on the source into a new parent element.

Ports:
Primary? |Content types Seq? Description
source input true xml html false |The document that contains the nodes to wrap.
result output true application/xml false The resulting document.
Options:
Default Description
match xs:string (XSLT true The XSLT match pattern for the nodes to wrap,
selection pattern) as a string. This must match either the document-

node, an element, a processing-instruction, or a
comment. If any other kind of node is matched,
error XCO023 (pg. 188) is raised.

wrapper XS :QName true The name of the wrapping element.
attributes map (xs :QName, false @) An optional map with entries (attribute name,
xs:anyAtomicType)? attribute value). The attributes specified in this

map are created on the wrapper element.
Specifying attributes using this option works
the same as performing a p:wrap step (without
an attributes option), directly followed by a
p:set-attributes (pg 124) step.

group-adjacent xs:string? (XPath |false @) An XPath expression to use for grouping
expression) the wrapped elements. See “Grouping” on
page 185 below.

Description

The p:wrap step takes the XSLT match pattern in the match option and holds this against the document
appeating on its source port. This pattern must match the document-node, an element, a processing-
instruction, or a comment. The matched node is wrapped in an element, as specified in the wrapper option.

The p:wrap step perform a “deep” wrapping: the children of any matched node are also processed. Wrappers
are added to a// matching nodes.

You can’t use p:wrap to wrap a text document. For this use p:wrap-sequence (pg. 188).

Grouping

The group-adjacent option of p:wrap allows you to group adjacent matching nodes in a single wrapper
element. The value of this option must a valid XPath expression. It is evaluated for every node in the source
document. Adjacent nodes with an equal result value are wrapped together in the same wrapper element.

For all nodes in the document on the source port:
* The node becomes the context item (accessible with the dot . operator).

* The expression in the group-adjacent option is evaluated.

XProc 3.1 Step Reference 186

* Two values of sibling nodes, computed by the XPath expression, are considered equal if the XPath
function deep-equal() (https://www.w3.org/TR/xpath-functions-31/#func-deep-equal) returns true
for them. In most cases this simply means that values are equal when you intuitively expect them to be.

* All sibling nodes with equal values for the XPath expression, that are adjacent, are wrapped together in a
wrapper element, as named by the wrapper option.

For an example see Grouping and wrapping (pg. 1806).

Examples

Basic usage

The following example wraps every thing element in a <computer-part> clement:
Source document:

<things>
<thing name="laptop"/>
<thing name="desktop">
<subthings>
<thing name="keyboard"/>
<thing name="mouse"/>
</subthings>
</thing>
</things>

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true"/>
<p:output port="result" sequence="true"/>

<p:wrap match="thing" wrapper="computer-part"/>
</p:declare-step>
Result document:

<things>
<computer-part>
<thing name="laptop"/>
</computer-part>
<computer-part>
<thing name="desktop">
<subthings>
<computer-part>
<thing name="keyboard"/>
</computer-part>
<computer-part>
<thing name="mouse"/>
</computer-part>
</subthings>
</thing>
</computer-part>
</things>

Please notice that the nested <thing> elements (inside the <subthings> element) are also wrapped. This is
because p:wrap performs “deep” wrapping.

Grouping and wrapping

This example shows what happens when you use the group-adjacent option. Here we group fruits by
color:

Source document:

<fruits>
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="carrot" color="orange"/>
<fruit name="lemon" color="yellow"/>
</fruits>

https://www.w3.org/TR/xpath-functions-31/#func-deep-equal

XProc 3.1 Step Reference 187

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true"/>
<p:output port="result" sequence="true"/>

<p:wrap match="fruit" wrapper="fruits-by-color" group-adjacent="@color"/>
</p:declare-step>
Result document:

<fruits>
<fruits-by-color>
<fruit color="yellow" name="banana"/>
</fruits-by-color>
<fruits-by-color>
<fruit color="orange" name="orange"/>
<fruit color="orange" name="carrot"/>
</fruits-by-color>
<fruits-by-color>
<fruit color="yellow" name="lemon"/>
</fruits-by-color>
</fruits>

You might have expected that the result would group the fruits together by color, resulting in groups of
elements, wrapped in <fruits-by-color> elements: one for banana+1lemon and one for orange+carrot.
But p:wrap groups sibling nodes that are adjacent to each other only. It does 7of do what would be called

35

“group by’ all sibling nodes with the same value for the XPath expression together in a single group. If you
need this, you will have to sort the document first. But unfortunately, XProc does not have anything on board

for that. For more complex grouping, the advice is to use XSLT or XQuery.

Replacing comments by elements

This example shows that you can use p:wrap not only to wrap elements, but also other kinds of nodes. Here
we use its functionality, together with the p:string-replace (pg 134) step, to change comments into
elements. For this, we first wrap every element in a <comment> element and then turn these comments into
text nodes using p:string-replace (pg 134).

Source document:

<examples>
<!--Comment 1-->
<!--Another comment..-->
</examples>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true"/>
<p:output port="result" sequence="true"/>

<p:wrap match="comment()" wrapper="comment"/>
<p:string-replace match="comment/comment()" replace="string(.)"/>

</p:declare-step>
Result document:
<examples>
<comment>Comment 1</comment>

<comment>Another comment..</comment>
</examples>

Additional details

* p:wrap preserves all document-properties of the document(s) appearing on its source port.

XProc 3.1 Step Reference 188

Errors raised

Error code

XCe023 (pg. 217) It is a dynamic error if the selection pattern matches a wrong type of node.

2.68 p:wrap-sequence

Wraps a sequence of documents in an element.

Summary

<p:declare-step type="p:wrap-sequence">
<input port="source" primary="true" content-types="text xml html" sequence="true"/>
<output port="result" primary="true" content-types="application/xml" sequence="true"/>
<option name="wrapper" as="xs:QName" required="true"/>
<option name="attributes" as="map(xs:QName, xs:anyAtomicType)?" required="false" select="()"/>
<option name="group-adjacent" as="xs:string?" required="false" select="()"/>
</p:declare-step>

The p:wrap-sequence step takes a sequence of documents on its source port and wraps these in a wrapper
element. The result appears on the result port. It can also group the source document(s) before wrapping,
based on an XPath expression.

Ports:

Type Primary? |Content types Seq? Description

source input true text xml html true The document(s) to wrap.
result output true application/xml true The resulting wrapped document(s)
Options:
Default Description
wrapper Xs :QName true The element to wrap the document(s) in.
attributes map (xs :QName, false @) An optional map with entries (attribute name,
xs:anyAtomicType)? attribute value). The attributes specified in this

map are created on the wrapper element.

Specifying attributes using this option works
the same as performing a p:wrap-sequence
step (without an attributes option), directly
followed by a p:set-attributes (pg. 124)

step.
group-adjacent xs:string? (XPath |false Q) An XPath expression to use for grouping
expression) the wrapped elements. See “Grouping” on

page 188 below.

Description

Basic usage of the p:wrap-sequence step is to wrap an element around a sequence of text, XML or HTML
documents. This action turns the sequence into a single XML document. See Basic usage (pg. 189) for how
this works. This example is however not very useful. A much more common scenario, wrapping the results of
a p:for-each loop, is shown in the Wrapping the results of a for-each loop (pg. 189) example.

Grouping

The group-adjacent option of p:wrap-sequence allows you to group documents together and wrap each
group in the same wrapper element. The value of this option must a valid XPath expression. It is evaluated
for every document in the input sequence. Documents with an equal result value are bundled together,
resulting in a sequence of documents on the result port.

For all documents appearing on the source port:
* The document becomes the context item (accessible with the dot . operator).
* The expression in the group-adjacent option is evaluated.

During this evaluation, the position() and last() functions are available to get the position of the
document in the sequence and the size of the sequence.

XProc 3.1 Step Reference 189

* Two values computed by the XPath expression are considered equal if the XPath function deep-
equal() (https://www.w3.org/TR/xpath-functions-31/#func-deep-equal) returns true for them. In
most cases this simply means that values are equal when you intuitively expect them to be.

e All documents with equal values for the XPath expression, that are adjacent in the sequence, are wrapped
in an element named by the wrapper option.

For an example see Grouping and wrapping (pg. 190).

Examples

Basic usage

The source port here receives a sequence of 4 <fruit> documents, by default. p:wrap-sequence wraps
this into a <fruits> element, turning the four separate documents into a single one.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="carrot" color="orange"/>
<fruit name="lemon" color="yellow"/>

</p:input>

<p:output port="result"/>

<p:wrap-sequence wrapper="fruits"/>
</p:declare-step>
Result document:

<fruits>
<fruit color="yellow" name="banana"/>
<fruit color="orange" name="orange"/>
<fruit color="orange" name="carrot"/>
<fruit color="yellow" name="lemon"/>
</fruits>

Wrapping the results of a for-each loop

A very common scenario in which p:wrap-sequence is used, is in wrapping the results of a p: for-each
loop. Such a loop usually results in a sequence of documents (one for each iteration). It’s often easier to turn
this (back) into a single document before continuing. The following example shows this. It has a p: for-each
loop over all yellow fruit elements that adds an attribute delivery="special”. The resulting documents are
wrapped in a <yellow-fruits> element, resulting in a single result document.

Source document:

<fruits>
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="carrot" color="orange"/>
<fruit name="lemon" color="yellow"/>
</fruits>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true"/>
<p:output port="result"/>

<p:for-each>

<p:with-input select="/*/*[@color eq 'yellow']"/>

<p:add-attribute attribute-name="delivery" attribute-value="special"/>
</p:for-each>

<p:wrap-sequence wrapper="yellow-fruits"/>
</p:declare-step>
Result document:

<yellow-fruits>
<fruit delivery="special" color="yellow" name="banana"/>
<fruit delivery="special" color="yellow" name="lemon"/>
</yellow-fruits>

https://www.w3.org/TR/xpath-functions-31/#func-deep-equal
https://www.w3.org/TR/xpath-functions-31/#func-deep-equal

XProc 3.1 Step Reference 190

Grouping and wrapping

Like Basic usage (pg. 189), the source port here receives a sequence of 4 <fruit> documents. The first
p:wrap-sequence step groups these, using the color attribute, and wraps these groups in a <fruits-by-
color> element. This results in a sequence of 3 documents, which is wrapped again, to enable showing it as a
single document.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" sequence="true">
<fruit name="banana" color="yellow"/>
<fruit name="orange" color="orange"/>
<fruit name="carrot" color="orange"/>
<fruit name="lemon" color="yellow"/>

</p:input>

<p:output port="result" sequence="true"/>

<p:wrap-sequence wrapper="fruits-by-color" group-adjacent="/*/@color"/>
<p:wrap-sequence wrapper="groups"/>

</p:declare-step>
Result document:

<groups>
<fruits-by-color>
<fruit color="yellow" name="banana"/>
</fruits-by-color>
<fruits-by-color>
<fruit color="orange" name="orange"/>
<fruit color="orange" name="carrot"/>
</fruits-by-color>
<fruits-by-color>
<fruit color="yellow" name="lemon"/>
</fruits-by-color>
</groups>
You might have expected that the result would group all fruits together by color, resulting in two documents:
one for banana+1lemon and one for orange+carrot. But p:wrap-sequence groups documents that are
adjacent to each other only. It does 7of do what would be called “group by””: all documents with the same value
for the XPath expression together in a single group. If you need this, you will have to sort the documents
first. But unfortunately, XProc does not have anything on board for that. For more complex grouping, the

advice is to use XSLT or XQuery.

Additional details

e No document-properties of the source document(s) survive.

* The resulting document(s) have no base-uri property.

2.69 p:www-form-urldecode

Decode a URL parameter string into a map.

Summary

<p:declare-step type="p:www-form-urldecode">
<output port="result" primary="true" content-types="application/json" sequence="true"/>
<option name="value" as="xs:string" required="true"/>

</p:declare-step>

The p:www-form-urldecode step decodes a URL parameter string (like a=b&c=d) into a map. The result
appears on the result port as a JSON document.

XProc 3.1 Step Reference 191

Ports:
Type Primary? ‘Content types Seqr Description
result output true application/json true The resulting map, as a JSON document.
Options:
‘Description
value xs:string |[true The URL parameter string to decode.
Description

The p:www-form-urldecode step is one of the few steps that have no primary input port, its main input is
the value of the value option. This value must be a valid URL parameter string: the part that usually comes
after the ? in a URL, like a=b&c=d. Officially, this is called a x-www-form-urlencoded string. This format is
also used for sending HTML form data over HT'TP.

The p:www-form-urldecode step takes such a string in its value option and converts it into a map. Each
name/value pair in the input string is represented as a key/value pair in the map. Petcent encoded values (like
%20 for space) are decoded. The + sign also acts as a space.

The resulting map appears on the result port as a JSON document.
There is also a step for encoding these kinds of strings, called p :www-form-urlencode (pg. 192).

Examples

Basic usage

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:www-form-urldecode value="a=b&b=a%20b&c=d+e+f"/>
</p:declare-step>
Result document:
{"a":"b","b":"a b","c":"d e f"}
Now assume you're interested in parameter ¢ and want to turn its value into an XML element. This is how
you can do this:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:www-form-urldecode value="a=b&b=a%20b&c=d+e+f"/>
<p:identity>
<p:with-input>
<result-c>{.?c}</result-c>
</p:with-input>
</p:identity>

</p:declare-step>
Result document:
<result-c>d e f</result-c>

The document coming out of the p:www-form-urldecode step is a map. This map flows through my
pipeline. The p:identity (pg 78) step, since it directly follows p:www-form-urldecode, can address

this map with the dot . operator. And . ?c is syntactic sugar for: give me the value of the context item map
with the key 'c'. You could also have written itas . ('c").

Parameters with the same name

When the string to decode contains multiple parameters with the same name, the result for that key will be
a sequence of values. We cannot serialize such a result directly (since JSON doesn't allow map entries with
multiple values), but we can access and work with it in our program.

XProc 3.1 Step Reference 192

In the following example, parameter a is duplicated. The p:identity (pg 78) step combines the values
for a with a pipe character |, using the XPath string-join() (https://www.w3.org/TR/xpath-
functions-31/#func-string-join) function.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>

<p:www-form-urldecode value="a=b&b=a%20b&a=d+e+f"/>
<p:identity>
<p:with-input>
<result-a-sequence>{string-join(.?a, '|')}</result-a-sequence>
</p:with-input>
</p:identity>

</p:declare-step>
Result document:

<result-a-sequence>b|d e f</result-a-sequence>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* If any parameter name occurs more than once in the input string, a sequence will be associated with the
respective key. The order in the sequence retains the order of name/value pairs in the encoded string.
However, if this happens, you cannot serialize (write to, for instance, disk) the result because it is no
longer valid JSON. You can however still use the map in your program and access its members. See also
the Parameters with the same name (pg. 191) example

Errors raised

Error code Description

XC0037 (pg. 217) It is a dynamic error if the value provided is not a propetly x-www-form-urlencoded value.

2.70 p:www-form-urlencode

Encode parameters into a URL string.

Summary

<p:declare-step type="p:www-form-urlencode">
<output port="result" primary="true" content-types="text/plain" sequence="true"/>
<option name="parameters" as="map(xs:string,xs:anyAtomicType+)" required="true"/>
</p:declare-step>

The p :www-form-urlencode step encodes a set of parameters, given as entries in a map, into a URL
parameter string (like a=b&c=d). The result appears on the result port as a text document.

https://www.w3.org/TR/xpath-functions-31/#func-string-join
https://www.w3.org/TR/xpath-functions-31/#func-string-join

XProc 3.1 Step Reference 193

Ports:
Type Primary? | Content Seqr Description
iTPES
result output true text/plain |true The resulting URL parameter string, as a text document.
Options:

‘ Reqp Description

parameters map(xs:string,xs:anyktemicTypemap with the parameters to encode.

+)

Description

The p:www-form-urlencode step is one of the few steps that have no primary input port, its main input

is the value of the parameters option. This value must be a map. The keys in the map are the parameter
names, the value(s) the parameter values. The result will be a parameter string (the part that usually comes
after the ? in a URL, like a=b&c=d). Officially, this is called a x-www-form-urlencoded string. This format is
also used for sending HTML form data over HTTP.

The resulting parameter string appears on the result port as a text document.

There is also a step for decoding these kinds of strings, called p :www-form-urldecode (pg. 190).

Examples

Basic usage

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:www-form-urlencode parameters="map{ 'a': 'b', 'c': 'd e f' }"/>
</p:declare-step>
Result document:

a=b&c=d+e+f

Multiple parameter values
If an entry in the map has multiple values (here for the entry with key a), the parameter is repeated in the
output:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:output port="result"/>
<p:www-form-urlencode parameters="map{ 'a': ('b', 'b2'), 'c': 'd e f' }"/>
</p:declare-step>
Result document:

a=b&a=b2&c=d+e+f

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

* Ifan entry in the map has multiple values, an entry for each value will appear in the resulting URL string.
See also the Multiple parameter values (pg. 193) example.

XProc 3.1 Step Reference 194

2.71 p:xinclude

Apply XlInclude procesing to a document.

Summary

<p:declare-step type="p:xinclude">
<input port="source" primary="true" content-types="xml html" sequence="true"/>
<output port="result" primary="true" content-types="xml html" sequence="true"/>
<option name="fixup-xml-base" as="xs:boolean" required="false" select="false()"/>
<option name="fixup-xml-lang" as="xs:boolean" required="false" select="false()"/>
</p:declare-step>

The p:xinclude step applies XInclude (https://www.w3.org/TR/xinclude/) processing to the document
appearing on the source document.

Ports:
Primary? |Content |Seq? Description
source |input true xml true The document to apply the XInclude processing to.
html
result output true xml true The resulting document.
html
Options:

Default Description

fixup-xml-base xs:boolean |[false false Petform base URI fixup (https://www.w3.otg/ TR/
xinclude/#base) to the resulting document. Basically
this means that xml:base elements are added to the
root elements of the included files, containing the URIs
they were included from. See also the Base URI fixup
(pg. 195) example.

fixup-xml-lang xs:boolean |[false false Perform language fixup (https://www.w3.otg/ TR/
xinclude/#language) on the resulting document. Basically
this means that an xml:lang attribute is added to the
root elements of the included documents. This stops

the language settings of the including document from
being inherited by the included document. See also the
Language fixup (pg. 196) example.

Description

The Xlnclude (https://www.w3.otg/TR/xinclude/) standard defines a syntax for specifying document

inclusions. Basically this means:

* In your source document you write (zero, one or multiple times): <xi:include href=".."/> (the xi
namespace prefix must be bound to the namespace http://www.w3.org/2001/XInclude).

* You run your document through the p:xinclude step.

* All<xi:include> elements are replaced with the contents of the document their href attribute is
pointing to.

* All<xi:include> elements in the included documents are processed also, recursively.

Additionally, the XInclude (https://www.w3.org/TR/xinclude/) standard defines some additional attributes

(https:/ /www.w3.otg/ TR /xinclude/#include_element) for the <xi:include> element. The most used one

is probably the parse attribute: parse="xml" (the default) means the document must be a well-formed XML

document and is included as an XML fragment; parse="text" means the document is included as plain text.

Thete is also an <xi:fallback> (https://www.w3.org/TR/xinclude/#fallback_element) child element that

defines what will happen if the included document could not be found.

https://www.w3.org/TR/xinclude/
https://www.w3.org/TR/xinclude/#base
https://www.w3.org/TR/xinclude/#base
https://www.w3.org/TR/xinclude/#language
https://www.w3.org/TR/xinclude/#language
https://www.w3.org/TR/xinclude/
https://www.w3.org/TR/xinclude/
https://www.w3.org/TR/xinclude/#include_element
https://www.w3.org/TR/xinclude/#include_element
https://www.w3.org/TR/xinclude/#fallback_element

XProc 3.1 Step Reference 195

Examples

Basic usage

Remark upfront: some of the example documents contain xml:lang attributes. These are intended for the
Language fixup (pg. 196) example below.
Assume we have a master document called document-0.xml that XIncludes two other documents:

<document-0 xmlns:xi="http://www.w3.0rg/2001/XInclude" xml:lang="en-us">
<description>This is the master document</description>
<xi:include href="includes/document-1.xml"/>
<xi:include href="includes/document-2.xml"/>
</document-0>
The first include document includes/document-1.xml looks like this, please notice that it contains an
<xi:include> element itself:
<document-1 xmlns:xi="http://www.w3.0rg/2001/XInclude">
<description>This is include document 1</description>
<xi:include href="document-2.xml"/>
</document-1>
The second include document includes/document-2.xml (that is also included by includes/
document-1.xml) looks like this:
<document-1 xmlns:xi="http://www.w3.0rg/2001/XInclude">
<description>This is include document 1</description>

<xi:include href="document-2.xml"/>
</document-1>

Now if we run document-0.xml through the p:xinclude step, the result is as follows:
Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="document-0.xml"/>
<p:output port="result"/>

<p:xinclude/>
</p:declare-step>
Result document:

<document-0 xml:lang="en-us">
<description>This is the master document</description>
<document-1>
<description>This is include document 1</description>
<document-2 xml:lang="en-gb">
<description>This is include document 2</description>
</document-2>
</document-1>
<document-2 xml:lang="en-gb">
<description>This is include document 2</description>
</document-2>
</document-0>

Base URI fixup

The XlInclude base URI fixup means that an xml:base attribute is added to the root elements of the included
documents. Using the same documents and include structure as the Basic usage (pg. 195) example, it looks
like this:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="document-@.xml"/>
<p:output port="result"/>

<p:xinclude fixup-xml-base="true"/>

</p:declare-step>

XProc 3.1 Step Reference 196

Result document:

<document-@ xml:lang="en-us">
<description>This is the master document</description>
<document-1 xml:base="file:/../../includes/document-1.xml">
<description>This is include document 1</description>
<document-2 xml:lang="en-gb" xml:base="file:/../../includes/document-2.xml">
<description>This is include document 2</description>
</document-2>
</document-1>
<document-2 xml:lang="en-gb" xml:base="file:/../../includes/document-2.xml">
<description>This is include document 2</description>
</document-2>
</document-0>

Notice that there is no xml:base attribute added to the root element of the master document. If you need a//
document root elements having an xml:base attribute, use the p:add-xml-base (pg. 8) step instead of
Xlnclude base URI fixup:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="document-0.xml"/>
<p:output port="result"/>

<p:xinclude/>
<p:add-xml-base relative="false"/>

</p:declare-step>

Result document:

<document-0 xml:lang="en-us" xml:base="file:/../../document-@.xml">
<description>This is the master document</description>
<document-1 xml:base="file:/../../includes/document-1.xml">
<description>This is include document 1</description>
<document-2 xml:lang="en-gb" xml:base="file:/../../includes/document-2.xml">
<description>This is include document 2</description>
</document-2>
</document-1>
<document-2 xml:lang="en-gb" xml:base="file:/../../includes/document-2.xml">
<description>This is include document 2</description>
</document-2>
</document-0>

Language fixup

The XlInclude language fixup means that an xml:1lang attribute is added to the root elements of the included
documents. This stops the language settings of the including document from being inherited by the included
documents. Using the same documents and include structure as the Basic usage (pg. 195) example, it looks
like this:

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source" href="document-@.xml"/>
<p:output port="result"/>

<p:xinclude fixup-xml-lang="true"/>
</p:declare-step>
Result document:

<document-0@ xml:lang="en-us">
<description>This is the master document</description>
<document-1 xml:lang="">
<description>This is include document 1</description>
<document-2 xml:lang="en-gb">
<description>This is include document 2</description>
</document-2>
</document-1>
<document-2 xml:lang="en-gb">
<description>This is include document 2</description>
</document-2>
</document-0>

Notice the empty xml:base="" attribute on the <document-1> element. That wasn’t there in the source.

It stops the language settings of the including document document-0.xml (xml:lang="en-us") from
automatically being inherited by the included document includes/document-1.xml.

XProc 3.1 Step Reference 197

Additional details

* p:xinclude preserves all document-properties of the document(s) appearing on its source port.

Errors raised

Error code Description

XC0029 (pg. 217) It is a dynamic error if an XInclude error occurs during processing,

2.72 p:xquery

Invoke an XQuery query.

Summary

<p:declare-step type="p:xquery">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<input port="query" primary="false" content-types="text xml" sequence="false"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="version" as="xs:string?" required="false" select="()"/>
</p:declare-step>

The p:xquery step applies an XQuery query to the sequence of documents provided on the source port.
Ports:

Type Primary? |Content |Seq? Description

types
source input true any true The documents to invoke the XQuery query on, accessible
using the XPath collection() (https://www.w3.otg/ TR/
xpath-functions-31/#func-collection) function. The first
document becomes the initial context item.

If no documents are provided on the source port, the
initial context item is undefined and the default collection is

empty.
result output true any true The resulting document(s).
query input false text false The XQuery query this step invokes. There are several
xml ways to specify the query, see “Specifying the query” on

page 198 below.

Options:
Description
parameters map(xs:QName, |false O A map with variable-names and corresponding values for
item()*)? the external variables in the query. See also the Passing

parameters to a query (pg. 199) example.

version xs:string? false O Explicitly sets the XQuery version to use. Probable values
are 3.0 or 3.1.

If this option is not set, officially the XQuery version used
is implementation-defined and therefore depends on the
XProc processor used. However, most likely the XProc
processor will use the version as indicated in the query (the
xquery version statement at the top of the query).

Description

XQuery is a programming language for querying sets of XML (and other) documents. More background
information can be found on its Wikipedia page (https://en.wikipedia.org/wiki/XQuery). It is used in, for
instance, XML databases like eXist (https://exist-db.org/exist/apps/homepage/index.html) and BaseX
(https:/ /basex.otg/).

The p:xquery step invokes the XQuery query, as provided on the query port, on the document(s) appearing
on the source port. The resulting document(s) appear on the result port.

https://www.w3.org/TR/xpath-functions-31/#func-collection
https://www.w3.org/TR/xpath-functions-31/#func-collection
https://en.wikipedia.org/wiki/XQuery
https://exist-db.org/exist/apps/homepage/index.html
https://basex.org/
https://basex.org/

XProc 3.1 Step Reference 198

Specifying the query

What appears on the query port determines the query the step invokes. XQuery queries are usually text
documents (not XML), but thete is a way to specify a quety using XML-only called XQueryX (https://
www.w3.0tg/ TR/xqueryx-31/). Thete are several ways to specify the query:
* If the document on the query port is a text document, this is the query.

* If the document on the query port is an XML document with root element <c:query> (the c
namespace prefix must be bound to the namespace http://www.w3.org/ns/xproc-step), the text
value of this root element is the query.

Usually this means that the <c:query> root element consists of text contents only (a single text node).
However, if there are child elements, all text nodes in the document will be concatenated.

* If the document on the query port is an XML document with its root element in the XQueryX
namespace (http://www.w3.0org/2005/XQueryX), the document is treated as an XQueryX (https://
www.w3.org/ TR/xqueryx-31/) query.

Whether XQueryX is supported is implementation defined and therefore depends on the XProc
processor used.

* Inall other cases, the document on the query port is first serialized (as if written to disk), using the
(optional) serialization document-property settings. The resulting text is used as the query.

Examples

Basic usage

Assume we have input documents containing <thing> elements and we want to output a list of these
elements, ordered by the value of their id attribute. The following XQuery query, called sort-things.xql,
does the trick:

xquery version "3.0" encoding "UTF-8";
<things-sorted count="{count(collection()//thing)}">

for $thing in collection()//thing
order by @id
return
$thing
}

</things-sorted>
The following pipeline releases this query on some input documents containing <thing> elements:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:input port="source" sequence="true">

<things>
<!-- Input document 1 -->
<thing id="123"/>
<nested-things>
<thing id="456"/>
</nested-things>
</things>

<things>
<!-- Input document 2 -->
<thing id="789"/>
</things>

</p:input>
<p:output port="result" sequence="true"/>

<p:xquery>
<p:with-input port="query" href="sort-things.xql"/>
</p:xquery>

</p:declare-step>
Result document:

<things-sorted count="3">
<thing id="123"/>
<thing id="456"/>
<thing id="789"/>

</things-sorted>

https://www.w3.org/TR/xqueryx-31/
https://www.w3.org/TR/xqueryx-31/
https://www.w3.org/TR/xqueryx-31/
https://www.w3.org/TR/xqueryx-31/

XProc 3.1 Step Reference 199

Passing parameters to a query

Let’s make the Basic usage (pg. 198) example also usable for other elements than <thing>. The name of
the element to count is passed as an external variable. The query, called sort.xql, is as follows:

xquery version "3.0" encoding "UTF-8";
declare variable $elm-name as xs:string external;

<things-sorted count="{count(collection()//*[local-name() eq $elm-name])}">
{
for $elm in collection()//*[local-name() eq $elm-name]
order by @id
return
$elm
}

</things-sorted>
The following pipeline releases this query on the same input documents as the Basic usage (pg. 198)

example. It again selects <thing> elements, but the (local) name of this element is now passed as an external
variable:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">
<p:input port="source" sequence="true">

<things>
<!-- Input document 1 -->
<thing id="123"/>
<nested-things>
<thing id="456"/>
</nested-things>
</things>

<things>
<!-- Input document 2 -->
<thing id="789"/>
</things>

</p:input>
<p:output port="result" sequence="true"/>

<p:xquery parameters="map{'elm-name': 'thing'}">
<p:with-input port="query" href="sort.xql"/>
</p:xquery>
</p:declare-step>
Result document:

<things-sorted count="3">
<thing id="123"/>
<thing id="456"/>
<thing id="789"/>

</things-sorted>

Additional details

* Which XQuery version(s) is/are supported is implementation-defined and thetefore depends on the
XProc processor used.

* No document-properties from the source document(s) are preserved.

* The base-uri document of each result document is determined by the query. If the query does not
establish a base URI, the document will not have a base-uri document-property.

Errors raised

Error code Description ‘
XC0009 (pg. 217) It is a dynamic error if the specified XQuery version is not available.
Xce1e1 (pg 218) It is a dynamic error if a document appearing on port source cannot be represented in the

XDM version associated with the chosen XQuery version, e.g. when a JSON document
contains a map and XDM 3.0 is used.

XC0102 (pg. 218) It is a dynamic error if any key in option parameters is associated to a value that cannot be
represented in the XDM version associated with the chosen XQuery version, e.g, with a map,
an array, or a function when XDM 3.0 is used.

XProc 3.1 Step Reference 200

Error code Description
XC0103 (pg: 218) It is a dynamic error if any error occurs during XQuery’s static analysis phase.
XC0104 (pg. 218) It is a dynamic error if any error occurs during XQuery’s dynamic evaluation phase.

2.73 p:xsl-formatter

Renders an XSL-FO document.

Summary

<p:declare-step type="p:xsl-formatter">

<input port="source" primary="true" content-types="xml" sequence="false"/>

<output port="result" primary="true" content-types="any" sequence="false"/>

<option name="content-type" as="xs:string?" required="false" select="()"/>

<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
</p:declare-step>

The p:xsl-formatter step expects a valid XSL-FO (https://en.wikipedia.org/wiki/
XSL_FormattingObjects) document on its source port. This is rendered, usually into PDF. The resulting
rendition appears, as a binary document, on the result port.

Ports:

Primary? |Content |Seq? Description
types

source input true xml false The XSL-FO (https://en.wikipedia.org/wiki/
XSL_Formatting_Objects) document to render.

result output true any false The resulting rendition.

Options:

Default Description

content-type |xs:string? false @) The content-type (media type) of the rendition that
appears on the result port. The default value is
application/pdf. Whether any other formats are
supported is implementation-defined and therefore
dependent on the XProc processor and renderer used.

parameters map (xs :QName, false @) Parameters used to control the rendering, The XProc
item()*)? specification does not define any parameters for this
option. A specific XProc processor (or renderer used)
might define its own.

Description

The p:xsl-formatter step allows you to transform XML into some kind of rendition, usually

PDE To do this, you must first transform your XML into XSL-FO (https://en.wikipedia.org/wiki/
XSL_Formatting Objects). This can be done by several means, most likely one or more XSLT
transformations by p:xslt (pg 201). After this, the p:xsl-formatter step renders the document for
you.

In most cases, p:xsl-formatter relies on an external XSL-FO (https://en.wikipedia.org/wiki/
XSL_Formatting Objects) formatter, for instance the open source FOP (https://xmlgraphics.apache.org/
fop/) ot one of the commercial ones. You’ll probably have to do some XProc processor dependent
configuration before this step will work. Please consult the XProc processor documentation about this.

https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://en.wikipedia.org/wiki/XSL_Formatting_Objects
https://xmlgraphics.apache.org/fop/
https://xmlgraphics.apache.org/fop/

XProc 3.1 Step Reference 201

Examples

Basic usage

The following pipeline transforms an XSL-FO document into PDF using p:xsl-formatter, and stores it as
result.pdf:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="result-uri@store-pdf"/>

<p:xsl-formatter/>
<p:store href="result.pdf" name="store-pdf"/>

</p:declare-step>

Additional details

* The document appearing on the result port only has a content-type property. It has no other
document-properties (also no base-uri).

Errors raised

Error code Description

XCe167 (pg. 220) It is a dynamic error if the requested document cannot be produced.

XC0204 (pg. 221) It is a dynamic error if the requested content-type is not supported.

XD0079 (pg. 221) It is a dynamic error if a supplied content-type is not a valid media type of the form
type/subtype+ext ” or « type/subtype .

2.74 p:xslt

Invoke an XSLT stylesheet.

Summary

<p:declare-step type="p:xslt">
<input port="source" primary="true" content-types="any" sequence="true"/>
<output port="result" primary="true" content-types="any" sequence="true"/>
<input port="stylesheet" primary="false" content-types="xml" sequence="false"/>
<output port="secondary" primary="false" content-types="any" sequence="true"/>
<option name="global-context-item" as="item()?" required="false" select="()"/>
<option name="initial-mode" as="xs:QName?" required="false" select="()"/>
<option name="output-base-uri" as="xs:anyURI?" required="false" select="()"/>
<option name="parameters" as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="populate-default-collection" as="xs:boolean?" required="false" select="true()"/>
<option name="static-parameters” as="map(xs:QName, item()*)?" required="false" select="()"/>
<option name="template-name" as="xs:QName?" required="false" select="()"/>
<option name="version" as="xs:string?" required="false" select="()"/>
</p:declare-step>

The p:xslt step invokes the XSLT stylesheet that appears on the stylesheet port. What exactly happens
depends on the XSLT version used.

Ports:

Primary? Content Seq? Description

types
source input true any true The source document(s) to transform. What exactly
happens with these documents depends on the XSLT
stylesheet version. See below.

result output |true any true The principal resulting document(s) of the
transformation.

stylesheet input false xml false The XSLT stylesheet to invoke.

secondary output |false any true Any secondary documents created by the
transformation.

Starting with XSLT version 2.0, you can use the XSLT
<xsl:result-document> instruction for this.

XProc 3.1 Step Reference 202

Options:

Default Description
global-context- item()? false @) This explicitly sets the global context item for
item the XSLT stylesheet: the data the stylesheet statts

working on. If you don’t use this option, the global
context item is determined by what appears on the
source port.

Setting the global context item is supported starting
XSLT version 3.0.

initial-mode XS :QName? false @) If this option is set, the XSLT stylesheet starts
processing in the given mode.

Modes are supported starting XSLT version 2.0.

output-base-uri xs:anyURI? false @) Explicitly sets the base URI for the stylesheet
result(s). What exactly happens depends on the
XSLT stylesheet vetsion. See below.

parameters map (Xxs :QName, false @) A map with parameter-names and corresponding
item()*)? values to pass as global parameters to the XSLT
stylesheet.
populate-default- |xs:boolean? false true XSLT stylesheets have a default collection, accessible
collection using the XPath collection() (https://www.w3.otg/

'TR/xpath-functions-31/#func-collection) function.
If you set this option to true, the documents
appearing on the source port become the default
collection.

Collections are supported starting XSLT
version 2.0.

static-parameters |map(xs:QName, false @) A map with parameter-names and corresponding
item()*)? values to pass as static parameters to the XSLT
stylesheet.

Static stylesheet parameters are supported starting
XSLT version 3.0.

template-name Xs :QName? false @) Usually, an XSLT stylesheet starts processing using
“apply-template invocation™: it tries to find the
most appropriate matching template and starts
processing there. However, if the template-

name option is set, a “call-template invocation”

is performed: processing starts at that named
template.

Starting processing at a named template is
supported starting XSLT version 2.0.

version xs:string? false @) Explicitly sets the XSLT stylesheet version.
Probable values are 1.0, 2.0 or 3.0.

If this option is not set, officially the XSLT version
used is implementation-defined and therefore
depends on the XProc processor used. However,
most likely the XProc processor will use the
stylesheet version as indicated on the stylesheet
root element (the xs1:stylesheet/@version or
xsl:transform/@version attribute).

Description

The p:xslt step invokes the XSLT stylesheet that appears on the stylesheet port. What is used as input,
how the XSLT processing starts and where/how the results appear depends on the XSLT version used. This
is explained in the sections below.

Because of all the details, invoking the p:xslt step seems complicated. However, presumably, in the vast
majority of cases it will be used in a classical manner: invoke an XSLT stylesheet on a source document and
continue the pipeline using its result. Maybe with some parameters, maybe with some secondary results.
For this, have a look at the Basic usage (pg. 205) and Basic usage with secondary documents (pg. 2006)
examples and don’t let all the details overwhelm you.

https://www.w3.org/TR/xpath-functions-31/#func-collection
https://www.w3.org/TR/xpath-functions-31/#func-collection

XProc 3.1 Step Reference 203

Specifying the XSLT version is important but, in most cases, rather simple: most likely the version as specified
on the XSLT stylesheet root element (the xs1:stylesheet/@version or xsl:transform/@version
attribute) is used. Since such a version attribute is required anyway, there usually won’t be anything special you

need to do. However, if you want you can set the version explicitly using the version option.

Invoking an XSLT 3.0 stylesheet

If the stylesheet version is determined as 3.0, the following happens:

The parameters as set by the static-parameters option are passed to the stylesheet invocation as
values for its static parameters.

An XSLT version 3.0 stylesheet has a global context item, the data the stylesheet works upon. This is
determined as follows:

* Ifthe global-context-item option is set, this becomes the global context item.

* Ifthe global-context-item option is 7ot set and a single document appears on the source port,
this will become the global context item.

* Ifthe global-context-item option is 7ot set and none or multiple documents appear on the
source pott, the global context item is absent/empty.

If the populate-default-collection is set to true, all documents that appear on the source port
become the defanit collection, accessible using the XPath collection() (https://www.w3.org/ TR/ xpath-
functions-31/#func-collection) function.

Then it is determined how to start the stylesheet processing:

e If the template-name is nof set, the normal “apply-template invocation” is performed. The
document(s) that appear on the source port are used, one by one, for the initial match.

If the initial-mode option is set, processing starts in that mode.

e If the template-name is set, the named template with that name (<xsl:template name="..">)is
invoked.

The initial-mode option is ignored.

The stylesheet processes.

The result(s) appears on the output port(s):

* Al principal results of the stylesheet appear on the result port.

e Any results created by <xsl:result-document> instructions appear on the secondary port.

Finally, the base URISs of the resulting documents (their base-uri document-property values) are

determined. For this we first need to determine the base-ontput-URI:

* If the base-output-uri option is set, this value is used as base-output-URI.

* If the base-output-uri option is 707 set and there are documents on the source port, the base
URI of the first document on the source port is used as base output URL

* If the base-output-uri option is not set and there are 7o documents on the source port, the base
URI of the stylesheet is used as base-output-URI.

The base URIs of the resulting documents (their base-uri document-property values) are now

computed using this base-output-URI:

* The base URI of the principal output document(s) becomes the base-output-URI. This means that
when there are multiple principal documents, they all have the same base URI!

* For all documents appearing on the secondary port, the base URI is determined by the

xsl:result-document/@href attribute. A relative value is made absolute against the base-output-
URL

Invoking an XSLT 2.0 stylesheet

If the stylesheet version is determined as 3.0, the following happens:

The following options are ignored: static-parameters, global-context-item.

An XSLT version 2.0 stylesheet has an énitial context node, the initial data the stylesheet works upon. This is
determined as follows:

* When no documents appear on the source pott, the initial context node is undefined/empty.

* When one or multiple documents appear on the source port, only the firsz document becomes the
initial context node.

https://www.w3.org/TR/xpath-functions-31/#func-collection
https://www.w3.org/TR/xpath-functions-31/#func-collection

XProc 3.1 Step Reference 204

If the populate-default-collection is set to true, all documents that appear on the source port
become the defanit collection, accessible using the XPath collection() (https://www.w3.org/ TR/xpath-
functions-31/#func-collection) function.

Then it is determined how to start the stylesheet processing:

e If the template-name is nof set, the normal “apply-template invocation” is performed. The
document(s) that appear on the source port are used, one by one, for the initial match.

If the initial-mode option is set, processing starts in that mode.

* If the template-name is set, the named template with that name (<xsl:template name="..">)is
invoked.

The initial-mode option is ignored.
The stylesheet processes.
The result(s) appears on the output port(s):
* The principal result document of the stylesheet appears on the result port.
* Any results created by <xsl:result-document> instructions appear on the secondary port.

Finally, the base URISs of the resulting documents (their base-uri document-property values) are
determined. For this we first need to determine the base-output-URI:

* If the base-output-uri option is set, this value is used as base-output-URL

e If the base-output-uri option is #ot set and there are documents on the source port, the base
URI of the first document on the source port is used as base output URL

* If the base-output-uri option is 7oz set and there are no documents on the source port, the base
URI of the stylesheet is used as base-output-URI.

The base URIs of the resulting documents (their base-uri document-property values) are now

computed using this base-output-URI:

* The base URI of the principal output document becomes the base-output-URI.

* Tor all documents appearing on the secondary port, the base URI is determined by the

xsl:result-document/@href attribute. A relative value is made absolute against the base-output-
URI.

Invoking an XSLT 1.0 stylesheet

If the stylesheet version is determined as 1.0, the following happens:

The following options are ignored: global-context-item, initial-mode, populate-default-
collection, static-parameters, template-name.

There must be exactly one document appearing on the source port. This document will be processed.
The stylesheet processes.
The resulting document appears on the result port. The secondary port will always be empty.

Finally, the base URI of the resulting document (its base-uri document-property value) is determined.
For this we first need to determine the base-ontpuz-URI:

* Ifthe base-output-uri option is set, this value is used as base-output-URL

* If the base-output-uri option is not set, the base URI of the firsz document on the source port is
used as base-output-URIL.

The base URI of the output document becomes the base-output-URI.

https://www.w3.org/TR/xpath-functions-31/#func-collection
https://www.w3.org/TR/xpath-functions-31/#func-collection

XProc 3.1 Step Reference 205

Examples

Basic usage

For the following example, we’ll use a very simple (3.0) stylesheet, called add-comment.xs1, that adds a
comment as the first child of the root element:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="3.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:xs="http://
www.w3.0rg/2001/XMLSchema" expand-text="true">

<xsl:mode on-no-match="shallow-copy"/>

<xsl:param name="comment-text" as="xs:string" required="false" select="'This is an added comment'"/>

<xsl:template match="/*">

<xsl:copy>
<xsl:apply-templates select="@*"/>
<xsl:comment> == {current-dateTime()} - {$comment-text} == </xsl:comment>

<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>
Running this without any bells and whistles is as follows:
Source document:

<customers>
<customer>
<name>PXSLT Company Ltd</name>
</customer>
</customers>

Pipeline document:
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:xslt>
<p:with-input port="stylesheet" href="add-comment.xsl"/>
</p:xslt>

</p:declare-step>

Result document:

<customers><!-- == 2025-04-15T11:33:20.3831442+02:00 - This is an added comment == -->
<customer>
<name>PXSLT Company Ltd</name>
</customer>
</customers>

Setting a stylesheet parameter is done by supplying a map with parameter name/value pairs as the value of the
parameters option:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result"/>

<p:xslt parameters="map{'comment-text': 'Special comment text by parameter!'}">
<p:with-input port="stylesheet" href="add-comment.xsl"/>
</p:xslt>

</p:declare-step>

Result document:

<customers><!-- == 2025-04-15T11:33:20.4046683+02:00 - Special comment text by parameter! == -->
<customer>
<name>PXSLT Company Ltd</name>
</customer>

</customers>

XProc 3.1 Step Reference 206

Basic usage with secondary documents

The output of <xsl:result-document> stylesheet instructions is written to the secondary port of the
p:xslt invocation. The base URI of these documents is the value of the xs1:result-document/@href
attribute.

The following stylesheet, called split-documents.xsl, writes the contents of each <document> element
to a separate, secondary, document. The base URI of the output documents is inferred from the document/
@name attribute. The primary output of the stylesheet is almost identical to its input: the full URI of each
written secondary output document is added to the <document> element in an href attribute.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="3.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"” xmlns:xs="http://
www.w3.0rg/2001/XMLSchema"” expand-text="true">

<xsl:mode on-no-match="shallow-copy"/>

<xsl:template match="document">
<xsl:variable name="href" as="xs:string" select="resolve-uri('tmp/' || @name)"/>
<xsl:result-document href="{$href}">
<xsl:sequence select="*"/>
</xsl:result-document>
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:attribute name="href" select="$href"/>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

When using this stylesheet in an XProc pipeline, the documents, written by <xsl:result-document>
instructions, end up on the secondary port. If we want these written to disk, we need to add some code for
it.

Source document:

<documents>
<document name="x1.xml">
<document-1/>
</document>
<document name="x2.xml">
<document-2/>
</document>
</documents>

Pipeline document:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0">

<p:input port="source"/>
<p:output port="result" pipe="result@create-secondary-documents"/>

<p:xslt name="create-secondary-documents">
<p:with-input port="stylesheet" href="split-documents.xsl"/>
</p:xslt>

<p:for-each>
<p:with-input pipe="secondary"/>
<p:store href="{base-uri(/)}"/>
</p:for-each>

</p:declare-step>
Result document:

<documents>
<document name="x1.xml" href="file:/../../tmp/x1.xml">
<document-1/>
</document>
<document name="x2.xml" href="file:/../../tmp/x2.xml">
<document-2/>
</document>
</documents>

The primary output of the p:xslt is explicitly piped to the output port of the pipeline here (by the
p:output/@pipe attribute).

The p:for-each after the p:xslt iterates over all secondary documents and invokes p:store (pg 132)

to store them to disk, using their base URI, that was set by the stylesheet. The result will be two documents,
called x1.xml and x2.xml, in the tmp/ folder underneath the stylesheet location.

XProc 3.1 Step Reference

Additional details

* Which XSLT version(s) is/ate supported is implementation-defined and therefore depends on the XProc

processor used. In most cases at least version 3.0 will be supported.

* No document-properties from the source document(s) are preserved.

* The base-uri document of each result document (both for the result and the secondary port) is
determined by the transformation. If the transformation does not establish a base URI, the document
will not have a base-uri document-property.

* If the template-name option is set, the initial-mode option is ignored.

* A relative value for the output-base-uri option is made absolute against the base URI of the element
in the pipeline it is specified on. In most cases this will be the path of the pipeline document.

* An XSLT stylesheet can terminate processing using an <xsl:message terminate="true"> instruction.

How such a termination is reported by the XProc processor is implementation-defined and therefore

depends on the XProc processor used.

* The order in which result documents appear on the secondary port is implementation-defined and
therefore depends on the XProc processor used.

Errors raised

Error code

XC00e7 (pg. 217)

Description

It is a dynamic error if any key in parameters is associated to a value which is not an instance
of the XQuery 1.0 and XPath 2.0 Data Model, e.g. with a map, an array, or a function.

XC0008 (pg. 217)

It is a dynamic error if the stylesheet does not support a given mode.

XCe038 (pg. 217)

It is a dynamic error if the specified xslt version is not available.

XC0839 (pg. 217)

It is a dynamic error if the source port does not contain exactly one XML document or one
HTML document if XSLT 1.0 is used.

XC0056 (pg. 217)

It is a dynamic error if the stylesheet does not provide a given template.

XCe093 (pg. 218)

It is a dynamic error if a static error occurs during the static analysis of the XSLT stylesheet.

XC0894 (pg. 218)

It is a dynamic error if any document supplied on the soutce port is not an XML document,
an HTML documents, ot a Text document if XSLT 2.0 is used.

XC0095 (pg. 218)

It is a dynamic error if an error occurred during the transformation.

XCe096 (pg. 218)

It is a dynamic error if the transformation is terminated by XSLT message termination.

XCe105 (pg 219)

It is a dynamic error if an XSLT 1.0 stylesheet is invoked and option parameters contains a
value that is not an atomic value or a node.

XCe121 (pg 219)

It is a dynamic error if a document appearing on the secondary port has a base URI that
is not both absolute and valid according to RFC 3986 (https://www.tfc-editor.org/info/
fc3986) .

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 208

3

Categories

3.1 Overview

Primary categories

The following categories are defined by the XProc specification itself:

Standard XProc steps (pg. 209)

XProc steps that a conformant XProc processor must support. In other words: whatever processor you
use for processing your XProc pipelines, you can trust that these steps will always work.

XProc dynamic pipeline execution steps (pg. 211)

XProc steps that deal with dynamic execution of pipelines (running pipelines inside another pipeline).
XProc email related steps (pg 211)

XProc steps that deal with email. An XProc processor is not required to support these.

XProc file and directory related steps (pg. 211)

XProc steps that deal with files and directories. An XProc processor is not required to support these.
XProc Invisible XML related steps (pg. 211)

XProc steps that deal with the processing of Invisible XML. An XProc processor is not required to
support these.

XProc operating system related steps (pg. 211)
XProc steps that deal with the operating system. An XProc processor is not required to support these.
XProc paged media related steps (pg. 211)

XProc steps that deal with creating paged media, for instance PDFE. An XProc processor is not required
to support these.

XProc text related steps (pg. 212)

XProc steps that deal with text, for instance Markdown. An XProc processor is not required to support
these.

XProc validation related steps (pg. 212)

XProc steps that deal with validation of XML and JSON documents. An XProc processor is not required
to support these.

Other categories

The following categories are defined by XProcRef:

Additional standards (pg. 212)

Steps that implement additional standards.

Archive handling (pg. 213)

These steps handle archives (for instance, ZIP files).

Base URI related (pg. 213)

These steps act on or use the base URI value of elements.

Basic XML manipulation (pg. 213)

These steps implement basic XML manipulation, like adding attributes, inserting elements, etc.
Compression (pg. 214)

Steps that have to do with compressing (or uncompressing) documents.
Interaction with the environment (pg. 214)

Steps that interact (or prepare interaction) with the environment of the pipeline, for instance
communication over HTTP(S) or working with directories and files.

JSON related steps (pg. 215)

Steps for handling JSON documents.

Miscellaneous (pg. 215)

Miscellaneous steps, which are usually used for housekeeping purposes in the pipeline.
Namespace handling (pg. 216)

XProc 3.1 Step Reference 209

Steps that have to do with namespace handling.
e Text document related steps (pg. 2106)

Steps that do something with (lines in) text documents.

3.2 Standard XProc steps

XProc steps that a conformant XProc processor zust support. In other words: whatever processor you use
for processing your XProc pipelines, you can trust that these steps will always work.

A

radd-attribute (pg. 6) - Add (or replace) an attribute on a set of elements.
radd-xml-base (pg 8) - Add explicit xml:base attributes to a document.

:archive (pg 11) - Perform operations on archive files.

o
T T T T

:archive-manifest (pg. 18) - Create an XML manifest document describing the contents of an
archive file.

:cast-content-type (pg 22) - Changes the media type of a document.
:compare (pg 29) - Compares documents for equality.
:compress (pg. 31) - Compresses a document.

T T T T

:count (pg. 32) - Count the number of documents.

e p:delete (pg. 306) - Delete nodes in documents.

e p:encode (pg. 45) - Encodes a document.
e p:error (pg 47) - Raises an error.

* p:filter (pg 03) - Selects parts of a document.

* p:hash (pg 65) - Computes a hash code for a value.
* p:http-request (pg 68) - Interact using HT'TP (or related protocols).

* p:identity (pg 78) - Copies the source to the result without modifications.

* p:insert (pg 80) - Inserts one document into another.

* p:json-join (pg 86) - Joins documents into a JSON array document.
* p:json-merge (pg. 89) - Joins documents into a JSON map document.

* p:label-elements (pg 92) - Labels elements by adding an attribute.
* p:load (pg 94) - Loads a document.

XProc 3.1 Step Reference 210

* p:make-absolute-uris (pg. 97) - Make URIs in the document absolute.

* p:message (pg 100) - Produces a message.

* p:namespace-delete (pg 101) - Deletes namespaces from a document.
* p:namespace-rename (pg 103) - Renames a namespace to a new URIL

* p:pack (pg 111) - Merges two document sequences, pair-wise.

* p:rename (pg 113) - Renames nodes in a document.
e p:replace (pg 115) - Replace nodes with a document.

:set-attributes (pg 124) - Add (or replace) attributes on a set of elements.
:set-properties (pg 126) - Sets or changes document-properties.

:sink (pg 127) - Discards all source documents.

:sleep (pg. 127) - Delays the execution of the pipeline.

:split-sequence (pg 128) - Splits a sequence of documents.

:store (pg 132) - Stores a document.

.
T T T T T T T

:string-replace (pg 134) - Replaces nodes with strings.

rtext-count (pg. 138) - Counts the number of lines in a text document.
rtext-head (pg 139) - Returns lines from the beginning of a text document.
rtext-join (pg. 140) - Concatenates text documents.

rtext-replace (pg 142) - Replace substrings in a text document.
ttext-sort (pg 143) - Sorts lines in a text document.

T T T T T T

rtext-tail (pg 146) - Returns lines from the end of a text document.

:unarchive (pg. 147) - Extracts documents from an archive file.
:uncompress (pg. 152) - Uncompresses a document.

:unwrap (pg. 154) - Unwraps elements in a document.

tuuid (pg 150) - Injects UUIDs into a document.

.
T T T T

:wrap (pg 185) - Wraps nodes in a parent element.
:wrap-sequence (pg. 188) - Wraps a sequence of documents in an element.

:www-form-urldecode (pg. 190) - Decode a URL parameter string into a map.

T T T T

:www-form-urlencode (pg. 192) - Encode parameters into a URL string,

XProc 3.1 Step Reference 211

X

* p:xinclude (pg 194) - Apply XInclude procesing to a document.
* p:xquery (pg 197) - Invoke an XQuery query.
* p:xslt (pg 201) - Invoke an XSLT stylesheet.

3.3 XProc dynamic pipeline execution steps

XProc steps that deal with dynamic execution of pipelines (running pipelines inside another pipeline).

* p:run (pg 116) - Runs a dynamically loaded pipeline.

3.4 XProc email related steps

XProc steps that deal with email. An XProc processor is not required to support these.

* p:send-mail (pg 121) - Sends an email message.

3.5 XProc file and directory related steps

XProc steps that deal with files and directories. An XProc processor is not required to support these.

D

* p:directory-list (pg 37) - List the contents of a directory.

:file-copy (pg 49) - Copies a file or directory.
:file-create-tempfile (pg 51) - Creates a temporary file.
:file-delete (pg 54) - Deletes a file or directory.

:file-info (pg 56) - Returns information about a file or directory.
:file-mkdir (pg 59) - Creates a directory.

:file-move (pg. 60) - Moves or renames a file or directory.

.
T T T T T T T

:file-touch (pg 62) - Changes the modification timestamp of a file.

3.6 XProc Invisible XML related steps

XProc steps that deal with the processing of Invisible XMIL. An XProc processor is not required to support
these.

* p:invisible-xml (pg 83) - Performs invisible XML processing.

3.7 XProc operating system related steps

XProc steps that deal with the operating system. An XProc processor is not required to support these.
* p:os-exec (pg 106) - Runs an external command.

* p:os-info (pg 110) - Returns information about the operating system.

3.8 XProc paged media related steps

XProc steps that deal with creating paged media, for instance PDE. An XProc processor is not required to
support these.

C

* p:css-formatter (pg 34) - Renders a document using CSS formating.

XProc 3.1 Step Reference 212

X

* p:xsl-formatter (pg 200) - Renders an XSL-FO document.

3.9 XProc text related steps

XProc steps that deal with text, for instance Markdown. An XProc processor is not required to support these.
* p:markdown-to-html (pg. 99) - Converts a Markdown document into HTML.

3.10 XProc validation related steps

XProc steps that deal with validation of XML and JSON documents. An XProc processor is not required to
support these.

* p:validate-with-dtd (pg 158) - Validates a document using a DTD.

. :validate-with-json-schema (pg. 160) - Validates a JSON document using JSON schema.
:validate-with-nvdl (pg. 164) - Validate a document using NVDL.
:validate-with-relax-ng (pg 167) - Validate a document using RELAX NG.

:validate-with-schematron (pg 171) - Validates a document using Schematron.

.
T T T T T

:validate-with-xml-schema (pg. 177) - Validates a document using XML Schema.

3.11 Additional standards

Steps that implement additional standards.

C

* p:css-formatter (pg 34) - Renders a document using CSS formating.

* p:http-request (pg 68) - Interact using HTTP (or related protocols).

* p:invisible-xml (pg 83) - Performs invisible XML processing.

* p:markdown-to-html (pg. 99) - Converts a Markdown document into HTML.

:validate-with-dtd (pg 158) - Validates a document using a DTD.
:validate-with-json-schema (pg. 160) - Validates a JSON document using JSON schema.
:validate-with-nvdl (pg. 164) - Validate a document using NVDL.
:validate-with-relax-ng (pg 167) - Validate a document using RELAX NG.
:validate-with-schematron (pg. 171) - Validates a document using Schematron.

T T T T T T

:validate-with-xml-schema (pg. 177) - Validates a document using XML Schema.

:xinclude (pg. 194) - Apply Xlnclude procesing to a document.
:xquery (pg. 197) - Invoke an XQuery query.

:xsl-formatter (pg. 200) - Renders an XSI.-FO document.
:xslt (pg 201) - Invoke an XSLT stylesheet.

T T T T

XProc 3.1 Step Reference 213

3.12 Archive handling

These steps handle archives (for instance, ZIP files).

A

* p:archive (pg 11) - Perform operations on archive files.

* p:archive-manifest (pg 18) - Create an XML manifest document describing the contents of an
archive file.

U

* p:unarchive (pg 147) - Extracts documents from an archive file.

3.13 Base URI related

These steps act on or use the base URI value of elements.

A

* p:add-attribute (pg 6) - Add (or replace) an attribute on a set of elements.
* p:add-xml-base (pg 8) - Add explicit xml:base attributes to a document.

* p:set-attributes (pg 124) - Add (or replace) attributes on a set of elements.
* p:set-properties (pg 120) - Sets or changes document-properties.

3.14 Basic XML manipulation

These steps implement basic XML manipulation, like adding attributes, inserting elements, etc.

A

* p:add-attribute (pg 6) - Add (or replace) an attribute on a set of elements.

e p:delete (pg 306) - Delete nodes in documents.

* p:insert (pg 80) - Inserts one document into another.

* p:label-elements (pg 92) - Labels clements by adding an attribute.

* p:namespace-delete (pg 101) - Deletes namespaces from a document.
* p:namespace-rename (pg. 103) - Renames a namespace to a new URL

* p:rename (pg 113) - Renames nodes in a document.

* p:replace (pg 115) - Replace nodes with a document.

XProc 3.1 Step Reference 214

* p:set-attributes (pg 124) - Add (or replace) attributes on a set of elements.
* p:string-replace (pg 134) - Replaces nodes with strings.

* p:unwrap (pg 154) - Unwraps elements in a document.
* p:uuid (pg 156) - Injects UUIDs into a document.

* p:wrap (pg 185) - Wraps nodes in a parent element.

3.15 Compression

Steps that have to do with compressing (or uncompressing) documents.

A

* p:archive (pg. 11) - Perform operations on archive files.

* p:archive-manifest (pg 18) - Create an XML manifest document describing the contents of an
archive file.

p:compress (pg 31) - Compresses a document.

p:unarchive (pg. 147) - Extracts documents from an archive file.

p:uncompress (pg. 152) - Uncompresses a document.

3.16 Interaction with the environment

Steps that interact (or prepare interaction) with the environment of the pipeline, for instance communication
over HTTP(S) or working with directories and files.

D

* p:directory-list (pg 37) - List the contents of a directory.

:file-copy (pg. 49) - Copies a file or directory.
:file-create-tempfile (pg 51) - Creates a temporary file.
:file-delete (pg 54) - Deletes a file or directory.

:file-info (pg 56) - Returns information about a file or directory.
:file-mkdir (pg 59) - Creates a directory.

:file-move (pg. 60) - Moves or renames a file or directory.

.
T T T T T T T

:file-touch (pg 62) - Changes the modification timestamp of a file.

* p:http-request (pg 68) - Interact using HT'TP (or related protocols).

XProc 3.1 Step Reference 215

* p:load (pg 94) - Loads a document.

* p:make-absolute-uris (pg. 97) - Make URIs in the document absolute.

* p:os-exec (pg 106) - Runs an external command.

* p:os-info (pg 110) - Returns information about the operating system.

* p:send-mail (pg 121) - Sends an email message.
* p:store (pg 132) - Stores a document.

* p:www-form-urldecode (pg. 190) - Decode a URL parameter string into a map.
* p:www-form-urlencode (pg. 192) - Encode parameters into a URL string.

3.17 JSON related steps

Steps for handling JSON documents.

J

* p:json-join (pg 80) - Joins documents into a JSON array document.
* p:json-merge (pg. 89) - Joins documents into a JSON map document.

Vv

* p:validate-with-json-schema (pg 160) - Validates a JSON document using JSON schema.

3.18 Miscellaneous

Miscellaneous steps, which are usually used for housekeeping purposes in the pipeline.

C

* p:cast-content-type (pg 22) - Changes the media type of a document.
* p:compare (pg. 29) - Compares documents for equality.
* p:count (pg 32) - Count the number of documents.

* p:encode (pg 45) - Encodes a document.

¢ p:error (pg 47) - Raises an error.

e p:filter (pg 63) - Selects parts of a document.

XProc 3.1 Step Reference 216

* p:hash (pg. 65) - Computes a hash code for a value.

* p:identity (pg 78) - Copies the source to the result without modifications.

* p:make-absolute-uris (pg. 97) - Make URIs in the document absolute.
* p:message (pg 100) - Produces a message.

e p:pack (pg 111) - Merges two document sequences, pair-wise.

S

* p:set-properties (pg 120) - Sets or changes document-properties.
* p:sink (pg 127) - Discards all source documents.

* p:sleep (pg 127) - Delays the execution of the pipeline.

e p:split-sequence (pg. 128) - Splits a sequence of documents.

U

* p:uuid (pg 156) - Injects UUIDs into a document.

* p:wrap-sequence (pg 188) - Wraps a sequence of documents in an element.

3.19 Namespace handling

Steps that have to do with namespace handling.
* p:namespace-delete (pg 101) - Deletes namespaces from a document.
* p:namespace-rename (pg 103) - Renames a namespace to a new URL

3.20 Text document related steps

Steps that do something with (lines in) text documents.
* p:text-count (pg 138) - Counts the number of lines in a text document.

rtext-head (pg 139) - Returns lines from the beginning of a text document.

ttext-join (pg 140) - Concatenates text documents.

p
p
* p:text-replace (pg 142) - Replace substrings in a text document.
p:text-sort (pg 143) - Sorts lines in a text document.

P

ttext-tail (pg 146) - Returns lines from the end of a text document.

XProc 3.1 Step Reference 217

A Error codes

All errors are in the http://www.w3.org/ns/xproc-error namespace (recommended prefix: err).

Error code Description ‘
XCoo01 It is a dynamic error if the value of option override-content-type is not a text media type.
XCeo03 It is a dynamic error if a “username” or a “password” key is present without specifying

a value for the “auth-method” key, if the requested auth-method isn't supported, or the
authentication challenge contains an authentication method that isn't supported.

XCoeeo7 It is a dynamic error if any key in parameters is associated to a value which is not an instance
of the XQuery 1.0 and XPath 2.0 Data Model, e.g. with a map, an array, or a function.

XCo008 It is a dynamic error if the stylesheet does not support a given mode.

XC0009 It is a dynamic error if the specified XQuery version is not available.

XCoo11 It is a dynamic error if the specified schema version is not available.

XCe012 It is a dynamic error if the contents of the directory path are not available to the step due to

access restrictions in the environment in which the pipeline is run.

XCe013 It is a dynamic error if the pattern matches a processing instruction and the new name has a
non-null namespace.

XCoo14 It is a dynamic error if the XML namespace (http://www.w3.org/XML/1998/namespace) or
the XMLNS namespace (http://www.w3.0rg/2000/xmlns/) is the value of either the from
option or the to option.

XCeo17 It is a dynamic error if the absolute path does not identify a directory.

XCe019 Itis a dynamic error if the documents are not equal according to the specified compatison
method, and the value of the fail-if-not-equal option is true.

XC0023 It is a dynamic error if the selection pattern matches a wrong type of node.

XCo024 It is a dynamic error if the selection pattern matches a document node and the value of the
position is “before” or “after”.

XCe025 It is a dynamic error if the selection pattern matches anything other than an element or a
document node and the value of the position option is “first-child” or “last-child”.

XCe029 It is a dynamic error if an XInclude error occurs during processing,

XCo030 It is a dynamic error if the response body cannot be interpreted as requested (e.g.
application/json to override application/xml content).

XCe032 It is a dynamic error if more than one document appears on the source port of the <p:0s-
exec> step.

XCe033 It is a dynamic error if the command cannot be run.

XCo034 It is a dynamic error if the current working directory cannot be changed to the value of the
cwd option.

XCe036 It is a dynamic error if the requested hash algorithm is not one that the processor understands
or if the value or parameters are not appropriate for that algorithm.

XCe037 It is a dynamic error if the value provided is not a propetly x-www-form-urlencoded value.

XC0038 It is a dynamic error if the specified xslt version is not available.

XCe039 It is a dynamic error if the source port does not contain exactly one XML document or one
HTML document if XSLT 1.0 is used.

XCoo50 It is a dynamic error the file or directory cannot be copied to the specified location.

XCe053 It is a dynamic error if the assert-valid option on <p:validate-with-nvdl> is true and
the input document is not valid.

XCeo54 It is a dynamic error if the assert-valid option is true and any Schematron assertions fail.

XCe055 It is a dynamic error if the implementation does not support the specified mode.

XC0056 It is a dynamic error if the stylesheet does not provide a given template.

XCo058 It is a dynamic error if the all and relative options are both true.

XCe059 It is a dynamic error if the QName value in the attribute-name option uses the

prefix “xmlns” or any other prefix that resolves to the namespace name http://
www.w3.0rg/2000/xmlns/.

XCo060 It is a dynamic error if the processor does not support the specified version of the UUID
algorithm.

XC0062 It is a dynamic error if the match option matches a namespace node.

XCeo63 It is a dynamic error if the path-separator option is specified and is not exactly one

character long,

XProc 3.1 Step Reference 218

Error code Description

XCoo64 It is a dynamic error if the exit code from the command is greater than the specified
failure-threshold value.

XC0069 It is a dynamic error if the properties map contains a key equal to the string “content-
type”.

XCe071 It is a dynamic error if the <p:cast-content-type> step cannot perform the requested cast.

XCe072 It is a dynamic error if the <c:data> contains content is not a valid base64 string;

XCo073 Itis a dynamic etror if the <c:data> element does not have a @content-type attribute.

XCoo74 It is a dynamic error if the content-type is supplied and is not the same as the @content-

type specified on the <c:data> element.

XCe076 It is a dynamic error if the comparison method specified in <p: compare> is not supported by
the implementation.

XC0077 It is a dynamic error if the media types of the documents supplied are incompatible with the
comparison method.

XCe078 It is a dynamic error if the value associated with the “fail-on-timeout” is associated with
true() and a HTTP status code 408 is encountered.

XCe079 It is a dynamic error if the map parameters contains an entry whose key is defined by the
implementation and whose value is not valid for that key.

XCoo80 It is a dynamic error if the number of documents on the archive does not match the
expected number of archive input documents for the given format and command.

XCo081 It is a dynamic error if the format of the archive does not match the format as specified in the
format option.

XCo083 It is a dynamic error if the @namespace attribute is specified, the @name contains a colon, and
the specified namespace is not the same as the in-scope namespace binding for the specified
prefix.

XCoo84 It is a dynamic error if two or more documents appear on the p:archive step's source port
that have the same base URI or if any document that appears on the source port has no base
URL

XC0085 It is a dynamic error if the format of the archive does not match the specified format, cannot
be understood, determined and/ot processed.

XCo086 It is a dynamic error for any unqualified attribute names to appear on a <c:param-set>
element.

XCo087 It is a dynamic error if the @namespace attribute is not specified, the @name contains a colon,
and the specified prefix is not in the in-scope namespace bindings.

XCo089 It is a dynamic error if the sequence type is not syntactically valid.

XCoe90 It is a dynamic error if an implementation does not support directory listing for a specified
scheme.

XC0092 It is a dynamic error if as a consequence of changing or removing the namespace of an
attribute the attribute's name is not unique on the respective element.

XC0093 It is a dynamic error if a static error occurs during the static analysis of the XSLT stylesheet.

XCe09%4 It is a dynamic error if any document supplied on the source port is not an XML document,
an HTML documents, or a Text document if XSLT 2.0 is used.

XC0095 It is a dynamic error if an error occurred during the transformation.

XC0096 It is a dynamic error if the transformation is terminated by XSLT message termination.

XC0098 It is a dynamic error if a dynamic XPath error occurred while applying sort-key to a line.

XCe099 It is a dynamic error if the result of applying sort-key to a given line results in a sequence
with more than one item.

XCo100 It is a dynamic error if the document on port manifest does not conform to the given
schema.

XCeleo1 It is a dynamic error if a document appearing on port source cannot be represented in the

XDM version associated with the chosen XQuery version, e.g. when a JSON document
contains a map and XDM 3.0 is used.

Xce1e2 It is a dynamic error if any key in option parameters is associated to a value that cannot be
represented in the XDM version associated with the chosen XQuery version, e.g. with a map,
an array, or a function when XDM 3.0 is used.

XCe1e3 It is a dynamic error if any error occurs during XQuery’s static analysis phase.

XCo104 It is a dynamic error if any error occurs during XQuery’s dynamic evaluation phase.

XProc 3.1 Step Reference 219

Error code Description

XCe1e5 It is a dynamic error if an XSLT 1.0 stylesheet is invoked and option parameters contains a
value that is not an atomic value or a node.

XCo106 It is a dynamic error if duplicate keys are encountered and option duplicates has value
“reject”.

Xce107 It is a dynamic error if a document of a not supported document type appears on port source
of p:json-merge.

XCo1e8 It is a dynamic error if any prefix is not in-scope at the point where the occurs.

XCe1e9 It is a dynamic error if a namespace is to be removed from an attribute and the element

already has an attribute with the resulting name. For instance, removing the namespace
with the ns1 prefix will raise this error when applied to <something nsl:status="ok"
status="bad"/>.

XCelle It is a dynamic error if the evaluation of the XPath expression in option key for a given item
returns either a sequence, an array, a map, or a function.

XCe111 It is a dynamic error if a document of an unsupported document type appears on port source
of p:json-join.

XCe112 It is a dynamic error if more than one document appears on the port manifest.

XCe113 It is a dynamic error if an attempt is made to delete a non-empty directory and the recursive
option was set to false.

XCo114 It is a dynamic error if the directory referenced by the href option cannot be created.

XCe115 It is a dynamic error if the resource referenced by the target option is an existing file or
other file system object.

XCe11e6 It is a dynamic error if the temporary file could not be created.

Xce117 It is a dynamic error if a report-format option was specified that the processor does not
support.

XCo118 It is a dynamic error if an archive manifest is invalid according to the specification.

XCe119 It is a dynamic error if flatten is neither “unbounded”, nor a string that may be cast to a
non-negative integer.

XCe12e It is a dynamic error if the relative-to option is not present and the document on the
source port does not have a base URI.

Xce121 It is a dynamic error if a document appearing on the secondary port has a base URI that
is not both absolute and valid according to RFC 3986 (https://www.tfc-editor.org/info/
rfc3986) .

XCe122 It is a dynamic error if the given method is not supported.

XCe123 It is a dynamic error if any key in the “auth” map is associated with a value that is not an
instance of the required type.

XCe124 It is a dynamic error if any key in the “parameters” map is associated with a value that is not
an instance of the required type.

XC0125 It is a dynamic error if the key “accept-multipart” as the value false() and a multipart
response is detected.

XC0126 It is a dynamic error if the XPath expression in assert evaluates to false.

XCe127 It is a dynamic error if the headers map contains two keys that are the same when compared
in a case-insensitive manner.

XCe128 It is a dynamic error if the URI’s scheme is unknown or not supported.

XCe129 It is a dynamic error if the requested HTTP version is not supported.

XCe131 It is a dynamic error if the processor cannot support the requested encoding,

XC0132 It is a dynamic error if the override content encoding cannot be supported.

XCe133 It is a dynamic error if more than one document appears on the source port and a content-
type header is present and the content type specified is not a multipart content type.

XCo134 It is a dynamic error if an implementation does not support <p:file-info> for a specified
scheme.

XCe135 Itis a dynamic error if <p:file-info> is not available to the step due to access restrictions in
the environment in which the pipeline is run.

XC0136 It is a dynamic error if an implementation does not support <p:file-touch> for a specified
scheme.

XC0137 It is a dynamic error if <p:file-touch> cannot be completed due to access restrictions in the

environment in which the pipeline is run.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

XProc 3.1 Step Reference 220

Error code Description

XCe138 It is a dynamic error if an implementation does not support <p:file-create-tempfile> for
a specified scheme.

XCe139 It is a dynamic error if <p:file-create-tempfile> cannot be completed due to access
restrictions in the environment in which the pipeline is run.

XCo140 It is a dynamic error if an implementation does not support <p:file-mkdir> for a specified
scheme.

XCe141 It is a dynamic error if <p:file-mkdir> not available to the step due to access restrictions in
the environment in which the pipeline is run.

XCo142 It is a dynamic error if an implementation does not support <p:file-delete> for a specified
scheme.

XCo143 It is a dynamic error if <p:file-delete> is not available to the step due to access restrictions
in the environment in which the pipeline is run.

XCo144 It is a dynamic error if an implementation does not support <p:file-copy> for a specified
scheme.

XCe145 It is a dynamic error if <p:file-copy> is not available to the step due to access restrictions in
the environment in which the pipeline is run.

XC0146 It is a dynamic error if the specified value for the override-content-types option is not an
array of arrays, where the inner arrays have exactly two members of type xs:string.

XCe147 It is a dynamic error if the specified value is not a valid XPath regular expression.

XCo148 It is a dynamic error if an implementation does not support <p:file-move> for a specified
scheme.

XCe149 It is a dynamic error if <p:file-move> is not available to the step due to access restrictions in
the environment in which the pipeline is run.

XCo150 It is a dynamic error if evaluating the XPath expression in option test on a context document
results in an error.

XCe151 It is a dynamic error if the document supplied on schema port is not a valid Schematron
document.

XCo152 It is a dynamic error if the document supplied on schema port is not a valid XML schema
document.

XC0153 It is a dynamic error if the document supplied on schema port cannot be interpreted as an
RELAX NG Grammar.

XCe154 It is a dynamic error if the document supplied on nvdl port is not a valid NVDL document.

XCe155 Itis a dynamic error if the assert-valid option on <p:validate-with-relax-ng> is true
and the input document is not valid.

XCe156 It is a dynamic error if the assert-valid option on <p:validate-with-xml-schema> is
true and the input document is not valid.

XCe157 It is a dynamic error if the href option names a directory, but the target option names a file.

XC0158 It is a dynamic error if the href option names a directory, but the target option names a file.

XC0159 It is a dynamic error if any key in the “auth” map is associated with a value that is not an
instance of the required type.

XCo160 It is a dynamic error if any key in the “parameters” map is associated with a value that is not
an instance of the required type.

Xco161 It is a dynamic error if the first document on the source port does not conform to the
required format.

XCo162 It is a dynamic error if the email cannot be send.

XCe163 It is a dynamic error if the selected version is not supported.

XCol64 It is a dynamic error if the document supplied on schema port is not a valid JSON schema
document in the selected version.

XCo165 It is a dynamic error if the assert-valid option on <p:validate-with-json-schema> is
true and the input document is not valid.

XCo166 It is a dynamic error if the requested document cannot be produced.

XC0167 It is a dynamic error if the requested document cannot be produced.

XCe200 It is a dynamic error if the pipeline input to the p:run step is not a valid pipeline.

XCo201 It is a dynamic error if the <p:uncompress> step cannot perform the requested content-type
cast.

XC0202 It is a dynamic error if the compression format cannot be undetstood, determined and/or

processed.

XProc 3.1 Step Reference 221

Error code Description

XCe203 It is a dynamic error if the specified boundary is not valid (for example, if it begins with two
hyphens “--7).

XCe204 It is a dynamic error if the requested content-type is not supported.

XCe205 It is a dynamic error if the source document cannot be parsed by the provided grammar.

XC0206 It is a dynamic error if the dynamically executed pipeline implicitly or explicitly declares a
primary input port with a different name than implicitly or explicitly specified in the p:run
invocation.

XCe207 It is a dynamic error if the dynamically executed pipeline implicitly or explicitly declares a
primary output port with a different name than implicitly or explicitly specified in the p:run
invocation.

XCe210 It is a dynamic error if the assert-valid option on <p:validate-with-dtd> is true and
the input document is not valid.

XCe211 It is a dynamic error if more than one document appears on the grammar port.

XCe212 It is a dynamic error if the grammar provided is not a valid Invisible XML grammar.

XDeo11 It is a dynamic error if the resource referenced by the href option does not exist, cannot be
accessed or is not a file.

XD0023 It is a dynamic error if a DTD wvalidation is performed and either the document is not valid or
no DTD is found.

XD0036 It is a dynamic error if the supplied value of a variable or option cannot be converted to the
required type.

XDoo43 Itis a dynamic error if the dtd-validate parameter is true and the processor does not
support DTD validation.

XD0o49 It is a dynamic error if the text value is not a well-formed XML document

XDoeo57 It is a dynamic error if the text document does not conform to the JSON grammar, unless the
parameter liberal is true and the processor chooses to accept the deviation.

XDo058 It is a dynamic error if the parameter duplicates is reject and the text document contains a
JSON object with duplicate keys.

XD@059 It is a dynamic error if the parameter map contains an entry whose key is defined in the

specification of fn:parse-json and whose value is not valid for that key, or if it contains an
entry with the key fallback when the parameter escape with true() is also present.

XD0060 It is a dynamic etror if the text document can not be converted into the XPath data model

XD0062 It is a dynamic error if the @content-type is specified and the document-properties has a
“content-type” that is not the same.

XDo064 It is a dynamic error if the base URI is not both absolute and valid according to RFC 3986
(https:/ /www.rfc-editor.org/info/1fc3986) .

XDo070 It is a dynamic error if a value is assigned to the serialization document property that

cannot be converted into map(xs:QName, item()*) according to the rules in section
“QName handling” of XProc 3.0 (https://xproc.org/) .

XDo0o78 It is a dynamic error if the loaded document cannot be represented as an HTML document in
the XPath data model.
XD0079 Itis a dynamic error if a supplied content-type is not a valid media type of the form “

type/subtype+ext ” or “ type/subtype .

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://xproc.org/

XProc 3.1 Step Reference 222

B Namespaces used

* http://www.w3.0org/ns/xproc (recommended prefix: p)
The main XProc namespace, used for all of its elements, steps and some of its attributes.
* http://www.w3.org/ns/xproc-step (recommended prefix: c)
This namespace is used for documents that are inputs or outputs from several standard and optional
steps.
* http://www.w3.org/ns/xproc-error (recommended prefix: err)
This namespace is used for XProc errors.
* http://www.w3.0rg/2001/XMLSchema (recommended prefix: xs)
This namespace is used for data types, such as xs:string and xs:boolean.
* http://www.w3.0org/ns/xproc-http (recommended prefix: rh)
The namespace used for specifying request headers in document-properties in the p:http-request
step.

